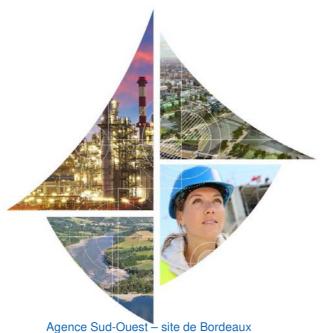


TEREGA

Site d'IZAUTE - LAUJUZAN (32)


Diagnostic environnemental du milieu souterrain

Rapport

Réf: CESISO210821 / RESISO12707

JBA/RV/VBE

03/05/2021

SIGNALETIQUE

CLIENT

RAISON SOCIALE	TEREGA
COORDONNÉES	40 avenue de l'Europe CS 20522 64010 PAU CEDEX France
INTERLOCUTEUR (nom et coordonnées)	Juliette DURAND Tel: 05 59 13 34 00 juliette.durand@terega.fr

GINGER BURGEAP

ENTITE EN CHARGE DU DOSSIER	Agence Sud-Ouest – site de Bordeaux 4, boulevard Jean-Jacques Bosc - Les Portes de Bègles – 33130 Bègles Tél : 05.56.49.38.22 • Fax : 05.56.49.89.69 burgeap.bordeaux@groupeginger.com
CHEF DU PROJET	Rémi Villalongue Tél. 06 45 98 26 23 E-mail : r.villalongue@groupeginger.com
COORDONNÉES Siège Social SAS au capital de 1 200 000 euros dirigée par Claude MICHELOT SIRET 682 008 222 000 79 / RCS Nanterre B 682 008 222 / Code APE 7112B / CB BNP Neuilly – S/S 30004 01925 00010066129 29	Siège Social 143, avenue de Verdun 92442 ISSY LES MOULINEAUX Tél : 01.46.10.25.70 E-mail : burgeap@groupeginger.com

RAPPORT

Offre de référence	PESISO14411
Numéro et date de la commande	C100018336 du 12/03/2021
Numéro de contrat / de rapport :	Réf : CESISO210821 / RESISO12707
Numéro d'affaire :	A51290
Domaine technique :	SP12

SIGNATAIRES

DATE	Indice	Rédaction Nom / signature	Vérification Nom / signature	Supervision / validation Nom / signature
30/04/2021	01	J. BASQUE	R. VILLALONGUE	V. BERNARDINI

SOMMAIRE

Synt 1.		cnnique	
	1.1 1.2 1.3	Objet de l'étude Codification des prestations Documents de référence et ressources documentaires	9
2.	Visite o	de site (A100)	11
	2.1 2.2	Localisation et environnement du site Description du site et des activités exercées	
3. 4.	Donné Investi	es disponibles sur l'état des milieuxgations sur les sols (A200)	14 14
	4.1 4.2 4.3 4.4 4.5 4.6	Programme et stratégie d'investigations	15 16 16 16
5.	Synthè	ese des impacts et mise à jour du schéma conceptuel	
	5.1 5.2	Synthèse des impacts dans les différents milieux	
6. 7. 8.	Synthè	es simples de gestioneses s d'utilisation d'une étude de pollution	21
FIG	URE	S	
		lisation du site et usages alentours dans un rayon de 600 mètreslisation des investigations, mesures de terrain et indices de pollution relevés	
TA	BLEA	AUX	
Table	au 1 : Res	ssources documentaires consultées	10
		alisation et environnement du site	
		scription du site	
		estigations et analyses réalisées sur les solssultats d'analyses sur les sols	
iabie	au J. nes	วนแลเจ น สะเสเรอยอ อนเ เออ อบเอ	10

ANNEXES

- Annexe 1. Compte rendu de visite de site et reportage photographique
- Annexe 2. Propriétés physico-chimiques
- Annexe 3. Fiches d'échantillonnage des sols
- Annexe 4. Méthodes analytiques, LQ et flaconnage
- Annexe 5. Bordereaux d'analyse des sols
- Glossaire

Synthèse technique

CONTEXTE				
TEREGA	TEREGA			
Contexte de l'étude	Projet d'implantation d'un nouveau forage et mise en exploitation.			
	Adresse du site	TEREGA IZAUTE, 32110 Laujuzan		
	Superficie totale	La zone d'étude mesure environ 4000 m², parmi un site industriel qui mesure 3,8 hectares environ		
	Parcelles cadastrales	Extraits parcellaires de B 964, 965, 1068		
	Propriétaire	TEREGA		
Informations sur	Exploitant et usage actuel	TEREGA, stockage souterrain de gaz		
le site lui-même		Au nord : champ en cultures, gîte du Burguet, habitations ;		
	Environnement proche	A l'est : route D143, parcelles enherbées, bois ; A l'ouest : parcelles enherbées et en culture, bois ; Au sud : route et domaine viticole.		
	Historique connu	Site mis en service en 1981		
Statut réglementaire	Installation ICPE et régime	Site classé SEVESO seuil haut.		
	Situation administrative	Soumise à autorisation		
Contexte géologique et hydrogéologique	Géologie	 Remblais en surface ; Formation des Sables fauves, sables ocres et blancs plus ou moins grossiers, dits sables de Lussagnet (Eocène inférieur). 		
	Hydrogéologie	 Une nappe est contenue dans les sables verts et fauves du Miocène moyen du Bassin Aquitain (nappe à parties libres et captives, unité semi perméable et poreuse). 		
Impacts connus sur le milieu souterrain	Etudes antérieures	Aucunes données portées à notre connaissance.		

MISSION			
Intitulé et objectifs	TEREGA va procéder à la foration d'un forage supplémentaire IZA 23. Préalablement à cette opération, TEREGA souhaite connaitre la qualité de sols au droit de la zone d'étude. Diagnostic de sols comprenant : Démarches administratives (DICT Plan de prévention, implantation) Sondages de sols et analyses en laboratoire.		
Historique du site et vulnérabilité des milieux	Aucune donnée portée à no	otre connaissance.	
Investigations réalisées	Sols	 8 sondages à 2 m de profondeur dont : 1 sondage avec 1 analyse entre 0 et 1 m et 1 analyse entre 1 et 2 m; 7 sondages avec 1 analyses entre 0 et 1 m 2 échantillons composites pour caractérisation des terres de surface (0-1 m) et analyse du pack ISDI. 	
Polluants recherchés	Sols	 Sur les échantillons élémentaires (9) : HCT C5-C40, HAP, BTEX, 8 Métaux Sur les échantillons composites (2) : Pack ISDI 	
Résultats des investigations	Qualité du sous-sol et impacts identifiés	Sols: Aspect pollution /sanitaire • Aucune pollution mise en évidence Aspect gestion des terres excavées • Réutilisation sur place ou évacuation en ISDI En absence de source de pollution, il n'est pas	
DECOMMANDATIONS	Schéma conceptuel	nécessaire d'établir un schéma conceptuel	
RECOMMANDATIONS			
	Mesures de gestion à prévoir	Gestion des terres excavées : les matériaux excédentaires peuvent être évacués en ISDI	

1. Introduction

1.1 Objet de l'étude

Dans le cadre de l'implantation du nouveau forage IZA23 sur le site de d'IZAUTE, sur la commune de LAUJUZAN (32), TEREGA souhaite connaître d'une part la qualité des sols au droit du chantier, et d'autre part les mesures de gestion des matériaux de surface potentiellement excédentaires.

GINGER BURGEAP a été missionné pour réaliser ce diagnostic, conformément au contrat cadre en vigueur depuis 2017.

Les opérations de terrain qui ont consisté en la réalisation de 8 sondages à 2 m de profondeur, se sont déroulées le 12 avril 2020. Le diagnostic fait l'objet du présent rapport.

1.2 **Codification des prestations**

L'étude est conforme à la méthodologie nationale de gestion des sites et sols pollués d'avril 2017 et aux exigences de la norme AFNOR NF X 31-620-2 : décembre 2018 « Qualité du sol – Prestations de services relatives aux sites et sols pollués » pour le domaine A : « Etudes, assistance et contrôle ». Elle comprend les prestations suivantes :

éléme	stations entaires (A) cernées	Objectifs		Prestations globales (A) concernées	Objectifs
	A100 A110	Visite du site Etudes historiques, documentaires et mémorielles		AMO Assistance à Maîtrise d'ouvrage en phase études	Assister et conseiller son client pendant tout ou partie de la durée du projet, en phase études.
	A120	Etude de vulnérabilité		LEVE Levée de doute	Le site relève-t-il de la politique nationale de gestion des sites pollués, ou bien est-il « banalisable » ?
\boxtimes	A130	des milieux Elaboration d'un programme prévisionnel		INFOS	Réaliser les études historiques, documentaires et de vulnérabilité, afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations.
	A200	d'investigations Prélèvements, mesures, observations et/ou analyses sur les sols		DIAG	Investiguer des milieux (sols, eaux souterraines, eaux superficielles et sédiments, gaz du sol, air ambiant) afin d'identifier et/ou caractériser les sources potentielles de pollution, l'environnement local témoin, les vecteurs de transfert, les milieux
	A210	Prélèvements, mesures, observations et/ou analyses sur les eaux			d'exposition des populations et identifier les opérations nécessaires pour mener à bien le projet (prélèvements, analyses)
	A220	souterraines Prélèvements, mesures, observations et/ou analyses sur les eaux superficielles et/ou les sédiments		PG Plan de gestion dans le cadre d'un projet de réhabilitation ou d'aménagement d'un site	Etudier, en priorité, les modalités de suppression des pollutions concentrées. Cette prestation s'attache également à maîtriser les impacts et les risques associés (y compris dans le cas où la suppression des pollutions concentrées s'avère techniquement complexe et financièrement disproportionnée) et à gérer les pollutions résiduelles et diffuses. Réalisation d'un bilan coûts-avantages (A330) qui permet un arbitrage entre les différents scénarios de gestion possibles (au moins deux), validés d'un point de vue sanitaire (A320) Préconisations sur la nécessité de réaliser, ou non, les prestations un plan de conception des travaux (PCT), un contrôle de la mise en œuvre des mesures (CONT), un suivi environnemental (SUIVI), la mise en place de restrictions d'usage et la définition des modalités de leur mise en œuvre ; ces préconisations peuvent également concerner l'organisation, la sécurité et l'encadrement des travaux à réaliser. Précision des mécanismes de conservation de la mémoire en lien avec les scénarios de gestion proposés
	A230	Prélèvements, mesures, observations et/ou analyses sur les gaz du sol			
	A240	Prélèvements, mesures, observations et/ou analyses sur l'air ambiant et les poussières atmosphériques			
	A250	Prélèvements, mesures, observations et/ou analyses sur les denrées alimentaires		IEM ☐ Interprétation de l'Etat des Milieux	La prestation IEM est mise en œuvre en cas de : mise en évidence d'une pollution historique sur une zone où l'usage est fixé (installation en fonctionnement, quartie résidentiel, etc.); mise en évidence d'une pollution hors des limites d'un site; signal sanitaire. Comparable à une photographie de l'état des milieux et des usages la prestation IEM vise à s'assurer que l'état des milieux d'expositior est compatible avec les usages existants [9]. Elle permet de distinguer les situations qui : ne nécessitent aucune action particulière; peuvent faire l'objet d'actions simples de gestion pour rétablir la compatibilité entre l'état des milieux et leurs usages constatés; nécessitent la mise en œuvre d'un plan de gestion
	A260	Prélèvements, mesures, observations et/ou analyses sur les terres excavées			
	A270	Interprétation des résultats des investigations			
	A300	Analyse des enjeux sur les ressources en eaux			
	A310	Analyse des enjeux sur les ressources environnementales		SUIVI	Suivi environnemental
	A320	Analyse des enjeux sanitaires		BQ	Interpréter les résultats des données recueillies au cours des quatre dernières années de suivi
	A330	Identification des différentes options de gestion possibles et réalisation d'un bilan		Bilan quadriennal	Mettre à jour l'analyse des enjeux concernés par le suivi sur la période sur les ressources en eau, environnementales et l'analyse des enjeux sanitaires. Vérifier la conformité des travaux d'investigation ou de surveillance.
		coûts/avantages		CONT Contrôles	Contrôler que les mesures de gestion sont réalisées conformément aux dispositions prévues
	A400	Dossiers de restriction d'usage, de servitudes		XPER VERIF Evaluation du passif environnemental	Expertise dans le domaine des sites et sols pollués Effectuer les vérifications en vue d'évaluer le passif environnemental lors d'un projet d'acquisition d'une entreprise

1.3 Documents de référence et ressources documentaires

Tableau 1 : Ressources documentaires consultées

Organisme consulté	Nature des données/références
IGN	Topographie, situation géographique
BRGM/Infoterre/Georisques	Géologie Données relatives à l'ICPE

2. Visite de site (A100)

2.1 Localisation et environnement du site

Tableau 2: Localisation et environnement du site

TEREGA site d'Izaute, 32110 LAUJUZAN
La zone d'étude est implantée sur les parcelles 964, 965, 1068 de la feuille B
La zone d'étude mesure environ 4000 m², au sein d'un site industriel qui mesure 3,8 hectares environ
123 m NGF (Nivellement Général de la France) / terrain plat
TEREGA
TEREGA, Activité de stockage de gaz dans l'aquifère profond
Au nord : champ en cultures, gîte du Burguet, habitations ;
A l'est : route D143, parcelles enherbées, bois, habitations ;
A l'ouest : parcelles enherbées et en culture, bois, habitations ;
Au sud : route et domaine viticole.

Tone d'étude

Site de TEREGA Izaute

Domaine viticole

Beleve

Peyrin

Figure 1 : Localisation du site et usages alentours dans un rayon de 600 mètres

2.2 Description du site et des activités exercées

La visite du site a été réalisée le 25 mars 2021, en présence de Rémi VILLALONGUE et Florent BARBAULT de GINGER BURGEAP et Angelo SOUSSAN chargé d'affaire opérationnel de TEREGA.

Le compte-rendu de la visite de site est présenté en **annexe 1**. Les informations recueillies sont synthétisées dans le **tableau 3**.

Tableau 3: Description du site

Aménagements /Occupation des sols	L'intégralité du site est recouvert d'une couche de forme calcaire Il existe une zone ATEX sur la zone d'étude.
Clôture/surveillance/conditions d'accès	Site fermé. Accessible sous permis de travail et information d'entrée par téléphone à la salle de contrôle
Etat des revêtements	Corrects
Activités et/ou installations potentiellement polluantes	Pas d'activités polluantes, à l'exception de la maintenance des canalisations aériennes (graissage etc)
Gestion des effluents	Séparateur à hydrocarbures sur le site d'étude
Présence et état des réseaux et caniveaux	Sans objet
Traces de pollution au sol	Non

3. Données disponibles sur l'état des milieux

Aucune information antérieure sur l'état des milieux n'a été portée à notre connaissance.

4. Investigations sur les sols (A200)

4.1 Programme et stratégie d'investigations

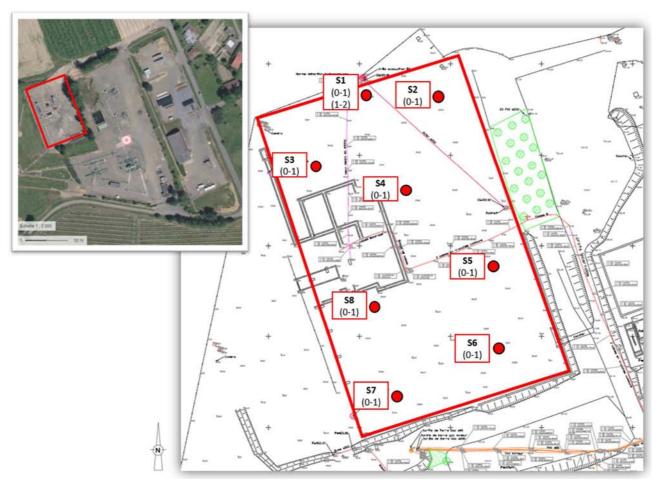
Le programme des investigations est présenté dans le Tableau 4.

Date d'intervention	12/04/2021
Prestataire de forage Technique de forage	TEMSOL Tarière mécanique
Investigations menées	Cf. Erreur ! Source du renvoi introuvable. et Erreur ! Source du renvoi introuvable. Les sondages ont été suivis en continu par un collaborateur spécialisé de GINGER BURGEAP qui a effectué les prélèvements.
Ecarts au programme prévisionnel	Un sondage, initialement envisagé dans la zone ATEX a été déplacé afin de sortir de la zone de danger.
Repli en fin de chantier	Sondages rebouchés avec les déblais de forage. Réfection des surfaces : à l'identique Déchets de chantier : sans objet
Laboratoire d'analyses	EUROFINS accrédité par le COFRAC

Tableau 4 : Investigations et analyses réalisées sur les sols

Milieux reconnus	Prestations	Localisation	Qté sondages	Profondeur (m)	Nb d'analyses	Substances analysées
	Sondages à la	A proximité du séparateur à hydrocarbures	1	2 m	2	HCT C5-C40, BTEX, HAP,
sols	tarrière	Reste du site, de manière homogène	7	2 m	7	8 métaux
SOIS	Prélèvement	Sondages S1, S2, S3, S4 (partie Nord)	-	0-1 m	1	Pack ISDI
	composite	Sondages S5, S6, S7, S8 (partie Sud)	-	0-1 m	1	FACK DDI

Les propriétés chimiques des polluants recherchés, les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé figurent en **annexe 2** et **annexe 4**.



4.2 Observations et mesures de terrain

Au regard des observations réalisées au cours des investigations, la succession des formations géologiques au droit du site est la suivante, de la surface vers la profondeur :

- des remblais, en surface sur une profondeur de 5 cm;
- des argiles marron limoneuses à graveleuses alternant localement avec des limons brun à ocre friables jusqu'à la fin des sondages (2 m).

Figure 2 : Localisation des investigations, mesures de terrain et indices de pollution relevés

4.3 Stratégie et mode opératoire d'échantillonnage

Après le levé de la coupe du sondage, le collaborateur de GINGER BURGEAP a procédé au prélèvement des échantillons de sols les plus représentatifs selon le protocole détaillé ci-après :

- 8 sondages à 2 m de profondeur dont :
 - 1 sondage (S1) avec 1 analyse entre 0 et 1 m et 1 analyse entre 1 et 2 m;
 - 7 sondages (S2 à S8) avec 1 analyse entre 0 et 1 m
 - 2 échantillons composites réalisés à partir des échantillons élémentaires (ISDI N à partir de S1, S2, S3 et S4 et ISDI S à partir de S5, S6, S7 et S8) pour caractérisation des matériaux superficiels (0-1 m) potentiellement terrassés en phase chantier et analyse du pack ISDI.

Une fois prélevés, les échantillons ont été conditionnés dans des bocaux d'une contenance de 375 ml.

4.4 Conservation des échantillons

Après description, conditionnement et étiquetage, les échantillons de sol ont été stockés en glacière jusqu'à leur arrivée au laboratoire.

4.5 Valeurs de référence pour les sols

Conformément à la méthodologie en vigueur, les concentrations dans les sols au droit de la zone d'étude ont été comparées en premier lieu à des concentrations caractéristiques de bruit de fond régionaux ou propre à certains contextes (urbain, agricole...). Dans un second temps, l'ensemble des résultats obtenus sur le site sera pris en compte pour évaluer le bruit de fond propre au site pour chaque famille de polluants et déterminer si le site présente des zones de pollution concentrée.

Ces valeurs de comparaison sont présentées dans les premières colonnes des tableaux de présentation des résultats d'analyse.

Métaux et métalloïdes sur sol brut	La gamme de concentrations qui sera utilisée pour comparaison est celle mise en évidence dans les sols naturels ordinaires (sans anomalie géochimique) dans le cadre du programme INRA-ASPITET. A défaut, nous utiliserons également les valeurs proposées par l'ATSDR (Agency for Toxic Substances and Disease Registry). Pour le plomb, le Haut Conseil de Santé Publique (HCSP) mentionne une valeur de 300 mg (Pb)/kg sol, comme étant une valeur seuil entraînant un dépistage du saturnisme infantile. Un seuil de vigilance a également été établi à 100 mg/kg de plomb dans les sols. Ces valeurs sont des valeurs de gestion mais ne constituent pas la valeur du bruit de fond.					
НАР	En l'absence de données locales, les valeurs de référence qui seront utilisées sont issues de celles établies par l'ATSDR (Toxicological profile for PAHs, 1995 et 2005) et de celles des fiches toxicologiques de l'INERIS pour des sols urbains ou agricoles.					
Autres composés	Pour les autres composés, en l'absence de valeurs caractérisant le bruit de fond, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.					
Gestion des déblais	Les concentrations sur le sol brut et sur l'éluât ont été comparées : • aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux déchets inertes.					

Réf : CESISO210821 / RESISO12707 JBA/RV/VBE 03/05/2021 Page 16/22

Bgp290/20

4.6 Résultats et interprétation des analyses sur les sols

Les résultats d'analyse sont synthétisés dans le tableau 5.

Les bordereaux des analyses réalisées dans le cadre de ce diagnostic sont présentés en annexe 5.

Tableau 5 : Résultats d'analyses sur les sols

				Landingston					TER	tEGA - Site de IZA	LITE				
		r	1	Localisation	014	04.0	004	004				074	004	IODIN	IODI O
				Sondage Profondeur (m)	S1A 0-1	\$1B 1-2	S2A 0-1	S3A 0-1	S4A 0-1	S5A 0-1	S6A 0-1	S7A 0-1	S8A 0-1	1SDI N 0-1	ISDI S 0-1
		Bruit de fond	Valeurs limite	Lithologie		Limon	Argile	Limon		Argile		Argile	Limons		
		(b)	des ISDI*	Lithologie	Argile	LIMON	Argile	LIIIOII	Limon argileux	Argile	Argile	Argile	LIMONS	Limons argileux	Limons argileux
				Indices organoleptiques	-	-	-	-	-	-	-	-	-	-	-
ANALYSES SUR SOL BRUT							<u>l</u>	<u> </u>			<u>l</u>	<u>.</u>	<u> </u>		
Matière sèche	%		-		83.8	89	83.9	83.8	89.6	85.7	83.7	83.6	88.6	84	85.5
COT COT Carbone Organique Total (a)	mg/kg Ms		30 000											1 920	2 500
Métaux et métalloïdes															
Arsenic (As) Cadmium (Cd)	mg/kg Ms mg/kg Ms	25 0.45	+		19.5 <0.40	6.56 <0.40	25.9 <0.40	19.6 <0.40	11.1 <0.40	33.6 <0.40	26.9 <0.40	15.2 <0.40	9.76 <0.40	-	-
Chrome (Cr)	mg/kg Ms	90	+		29.3	11.2	24	26.1	13.6	32.4	28.6	22.1	15	-	-
Cuivre (Cu)	mg/kg Ms	20	1		8.52	15	11.2	10.3	12.9	12.1	8.67	9.22	18.4	-	-
Mercure (Hg)	mg/kg Ms	0.1			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	-	-
Nickel (Ni)	mg/kg Ms	60	1		21.4	6.53	10.1	16.6	6.27	21.5	20.7	10.1	7.4	-	-
Plomb (Pb)	mg/kg Ms	50	4		18.7	14.4	15.9	16.5	12.3	30.7	24.8	15.4	13	-	-
Zinc (Zn) Hydrocarbures volatils C5-C10	mg/kg Ms	100			59.6	23.4	37.1	50.3	21.4	79	71.8	35.8	24.6	-	-
Fraction C5-C8	mg/kg Ms	LQ	-		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	-
Fraction C8-C10	mg/kg Ms	LQ	-		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	-
Somme des hydrocarbures C5-C10	mg/kg Ms	LQ	-		<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	-	-
Indice hydrocarbure C10-C40															
Fraction C10-C16	mg/kg Ms	LQ	-		4.02	6.24	6.61	5.74	<4.00	17.3	6.84	9.2	5.47	18.1	10.6
Fraction C16-C22 Fraction C22-C30	mg/kg Ms	LQ LQ	-		3.61 6.01	5.36 5.48	4.9 4.66	2.42 4.89	<4.00 <4.00	11.7 13.2	4.83 6.21	6.19 7.78	4.64 5.94	6.55 6.39	3.52 5.66
Fraction C32-C30 Fraction C30-C40	mg/kg Ms mg/kg Ms	LQ	-		4.42	3.62	2.5	3.15	<4.00	6.39	2.5	4.53	3.24	7.75	7.96
Somme des hydrocarbures C10-C40	mg/kg Ms	LQ	500		18.1	20.7	18.7	16.2	<15.0	48.7	20.4	27.7	19.3	38.8	27.7
HAP															
Naphtalène	mg/kg Ms	0.125	-		<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	0.22	0.2
Acénaphtylène	mg/kg Ms	-	-		<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05
Acénaphtène Fluorène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 0.07	<0.05 <0.05
Phénanthrène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.07	0.065
Anthracène	mg/kg Ms		-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthène	mg/kg Ms	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrène	mg/kg Ms	-	-		<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05
Benzo(a)anthracène Chrysène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Benzo(b)fluoranthène	mg/kg Ms	-	-		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(k)fluoranthène	mg/kg Ms	-	-		< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
Benzo(a)pyrène	mg/kg Ms	-	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracène	mg/kg Ms	-	-		<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05
Benzo(g,h,i)pérylène Indéno(1,2,3-cd)pyrène	mg/kg Ms mg/kg Ms	-	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Somme des HAP	mg/kg Ms	25	50		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.42	0.27
BTEX	gg	-												V	<u> </u>
Benzène	mg/kg Ms	LQ	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Toluène	mg/kg Ms	LQ	-		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Ethylbenzène	mg/kg Ms	LQ	-		<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05 <0.05	< 0.05	<0.05	<0.05	<0.05
m,p-Xylène o-Xylène	mg/kg Ms mg/kg Ms	LQ LQ	-		<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Somme des BTEX	mg/kg Ms	LQ	6		<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500
PCB															
PCB (28)	mg/kg Ms	LQ	-		-	-	-	-	-	-	-	-	-	< 0.01	< 0.01
PCB (52)	mg/kg Ms	LQ	-		-	-	-	-	-	-	-	-	-	<0.01	<0.01
PCB (101) PCB (118)	mg/kg Ms mg/kg Ms	LQ LQ	-		-	-	-	-	-	-	-	-	-	<0.01	<0.01 <0.01
PCB (118)	mg/kg Ms	LQ	-		-	-	-	-	-	-	-	-	-	<0.01	<0.01
PCB (153)	mg/kg Ms	LQ	-		-	-	-	-	-		-	-	-	< 0.01	< 0.01
PCB (180)	mg/kg Ms	LQ	-		-	-	-	-	-	-	-	-	-	<0.01	<0.01
Somme des PCB	mg/kg Ms	LQ	1		-	-		-	-	-	-	-	-	< 0.010	< 0.010
ANALYSES SUR ELUAT															
Paramètres généraux															
pH	-	-	-		-	-	-	-	-		-	-	-	8.7	8.7
Conductivité corrigée à 25 °C Fraction soluble (c)	μS/cm	-	4000		-	-	-	-	-	-	-	-	-	122	110
Fraction soluble (c) Carbone organique total	mg/kg M.S. mg/kg M.S.	-	4000 500		-	-	-	-	-	-	-	-	-	<2000 200	<4000 75
Indice phénol	mg/kg M.S.	-	1		-	-	-	-	-	-	-	-	-	<0.51	<0.51
Anions															
Fluorures	mg/kg M.S.	-	10		-	-	-	-	-	-	-	-	-	7.81	10.9
Chlorures (***)	mg/kg M.S.	-	800		-	-	-	-	-	-	-	-	-	45.5	21.2
Sulfates (***) Métaux et métalloïdes	mg/kg M.S.	-	1000		-	-	-	-	-	-	-	-	-	<51.0	69.2
Metaux et metalloides Antimoine	mg/kg M.S.	_	0.06		_						-		_	0.007	0.005
Arsenic	mg/kg M.S.	-	0.06		-	-	-	-	-		-	-	-	<0.20	<0.20
Baryum	mg/kg M.S.	-	20		-	-	-	-	-	-	-	-	-	0.12	< 0.10
Cadmium	mg/kg M.S.	-	0.04		-	-	-	-	-	-	-	-	-	< 0.002	<0.002
Chrome	mg/kg M.S.	-	0.5		-	-	-	-	-	-	-	-	-	<0.10	<0.10
Cuivre	mg/kg M.S.	-	0.01		-	-	-	-	-	-	-	-	-	<0.20 <0.001	<0.20 <0.001
Mercure Molybdène	mg/kg M.S. mg/kg M.S.	-	0.01		-	-	-	-	-		-	-	-	<0.001 0.045	<0.001 0.065
Nickel	mg/kg M.S.	-	0.5		-	-	-	-	-		-	-	-	<0.10	<0.10
Plomb	mg/kg M.S.	-	0.5		-	-	-	-	-	-	-	-	-	<0.10	<0.10
Zinc	mg/kg M.S.	-	4		-	-	-	-	-		-	-	-	<0.20	<0.20
Selenium	mg/kg M.S.	-	0.1		-	-	-	-	-	-	-	-	-	0.019	0.015
* Valeurs limites indicatives issues des textes européens, de															

Réf: CESISO210821 / RESISO12707 JBA/RV/VBE 03/05/2021 Page 18/22

[|] Impired Mr.S. | U.1 | U.1 | Impired Mr.S. | U.1 | U.1

LO: Limite de quantification du laboratoire
 concentration supérieure aux valeurs limites des ISDND et supérieure aux limites ISDI
 concentration inférieure aux valeurs limites des ISDND et supérieure aux limites ISDI

Sur sol brut

Métaux et métalloïdes

• Les teneurs mesurées en métaux sont globalement inférieures aux valeurs de bruit de bruit de fond géochimique national. Seuls 3 échantillons (S1A, S5A et S6A) présentent un léger dépassement en arsenic.

Composés organiques

- Hydrocarbures volatils C5-C10: les échantillons analysés présentent tous des teneurs inférieures à la limite de quantification du laboratoire.
- Indice hydrocarbures C10-C40: les teneurs en hydrocarbures C10-C40 sont comprises entre la limite de quantification et 50 mg/kg MS et ne sont pas représentatives d'un impact.
- BTEX : les teneurs mesurées sont systématiquement inférieures à la limite de quantification du laboratoire
- HAP: les teneurs mesurées sur les 9 échantillons élémentaires sont systématiquement inférieures à la limite de quantification du laboratoire. Les échantillons composites présentent quant à eux des traces de HAP, notamment en naphtalène, très inférieures aux valeurs de référence considérées.
- PCB : les teneurs mesurées sur les 2 échantillons composites sont inférieures à la limite de quantification du laboratoire

Sur éluât

- Paramètres généraux : les échantillons présentent des valeurs inférieures aux valeurs limites des ISDI.
- Anions : les échantillons présentent des teneurs très inférieures aux valeurs limites des ISDI.
- Métaux et métalloïdes : les échantillons présentent des teneurs inférieures aux valeurs limites des ISDI.

Gestion des déblais hors site

Au vu des résultats d'analyse ci-dessus et ainsi du caractère inerte des sols étudiés, les matériaux s'ils devaient être évacués hors-site pourraient être évacués en ISDI.

Synthèse des impacts et mise à jour du schéma conceptuel 5.

5.1 Synthèse des impacts dans les différents milieux

Les investigations réalisées ont mis en évidence l'absence d'impacts dans les sols au droit du site d'étude. Les autres milieux (eaux souterraines, gaz de sols) n'ont pas été investigués.

5.2 Schéma conceptuel

Le schéma conceptuel est une représentation des 3 éléments suivants :

- Source de pollution
- · Transfert des polluants
- · Cibles humaines par rapport à un usage.

Sur la base des résultats des investigations, en absence de source de pollution, il n'est pas nécessaire d'établir un schéma conceptuel.

Mesures simples de gestion 6.

Au vu des résultats d'investigations, montrant l'absence d'impacts dans les sols pour tous les composés étudiés et ainsi le caractère inerte des terres, aucune mesure de gestion spécifique n'est à mettre en place sur ce site, dans le cadre de ce projet.

Réf: CESISO210821 / RESISO12707 JBA/RV/VBE 03/05/2021 Page 20/22

7. Synthèse

Dans le cadre de la création d'un nouveau forage (IZA 23) au droit du site d'IZAUTE, TEREGA a missionné BURGEAP pour la réalisation d'un diagnostic environnemental du milieu souterrain.

Le chantier de diagnostic s'est déroulé le 12 avril 2021 et a consisté en la réalisation de 8 sondages de sol à 2 m de profondeur.

Les analyses en laboratoire, qui ont porté sur la recherche des hydrocarbures, HAP, BTEX, 8 métaux et pack ISDI ont montré l'absence d'impacts pour tous les composés étudiés, et des teneurs systématiquement inférieures aux valeurs de l'AM du 12/12/14.

Les matériaux de surface potentiellement terrassés peuvent être soit réutilisés sur site (régalage, remblaiement, merlons), soit évacués en ISDI.

8. Limites d'utilisation d'une étude de pollution


- 1- Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des sols, des eaux ou des déchets contenus dans le milieu souterrain. Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de GINGER BURGEAP.
- 2- Il est précisé que le diagnostic repose sur une reconnaissance du sous-sol réalisée au moyen de sondages répartis sur le site, soit selon un maillage régulier, soit de façon orientée en fonction des informations historiques ou bien encore en fonction de la localisation des installations qui ont été indiquées par l'exploitant comme pouvant être à l'origine d'une pollution. Ce dispositif ne permet pas de lever la totalité des aléas, dont l'extension possible est en relation inverse de la densité du maillage de sondages, et qui sont liés à des hétérogénéités toujours possibles en milieu naturel ou artificiel. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.
- 3- Le diagnostic rend compte d'un état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.
- 4- La responsabilité de GINGER BURGEAP ne pourra être engagée si les informations qui lui ont été communiquées sont incomplètes et/ou erronées et en cas d'omission, de défaillance et/ou erreur dans les informations communiquées.
- 5 Un rapport d'étude de pollution et toutes ses annexes identifiées constituent un ensemble indissociable. Dans ce cadre, toute autre interprétation qui pourrait être faite d'une communication ou reproduction partielle ne saurait engager la responsabilité de GINGER BURGEAP. En particulier l'utilisation même partielle de ces résultats et conclusions par un autre maître d'Ouvrage ou pour un autre projet que celui objet de la mission confiée ne pourra en aucun cas engager la responsabilité de GINGER BURGEAP.

La responsabilité de GINGER BURGEAP ne pourra être engagée en dehors du cadre de la mission objet du présent mémoire si les préconisations ne sont pas mises en œuvre.

 Réf : CESISO210821 / RESISO12707
 JBA/RV/VBE
 03/05/2021
 Page 22/22

ANNEXES

Annexe 1. Compte rendu de visite de site

Cette annexe contient 5 pages.

COMPTE RENDU DE VISITE DE SITE

1. Visite sur site

1.1 Identification des interlocuteurs

Date	25 mars 2021
Visite réalisée par	Rémi VILLALONGUE (chef de projet) Florent BARBAULT (technicien)
En présence de (nom, fonction, coordonnées)	Angelo SOUSSAN, chargé d'affaire opérationnel de TEREGA Lieu-dit "BIASSE", RD 6, 32460 LE HOUGA 05 62 08 65 64 / 06 71 90 41 95 angelo.soussan@terega.fr
Documents consultés	Plan des réseaux – Synoptique interne TEREGA Réponses DICT

1.2 Identification du site

Adresse	Site TEREGA d'IZAUTE - D143, 32110 Laujuzan
Références cadastrales	La zone d'étude est située au droit d'extraits des parcelles 964, 965, 1068 de la feuille B
Superficie totale	La zone d'étude mesure environ 4000 m², parmi un site industriel qui mesure 3,8 hectares environ
Usage actuel (friche, site industriel en activité, usage agricole)	Site industriel en activité comprenant des puits d'injection / soutirage de gaz et installations annexes. Aucun personnel attitré au site n'ets rpésent en continu.
Propriétaire actuel	TEREGA
Exploitant(s) actuel(s)	TEREGA
Site ICPE (oui/non, commentaires)	ICPE soumis à autorisation – SEVESO seuil Haut

1.3 Conditions générales d'accès

Site clôturé ? oui / non	Oui
surveillé ? oui / non	A distance. Nécessite l'information de la salle de contrôle par téléphone. Accès soumis à permis de travail
Difficultés spécifiques d'accès (→ nécessité d'adapter les machines de sondages/ de faire ouvrir un passage / de récupérer les clés) ?	Il sera nécessaire de faire ouvrir un portail spécifique pour faire accéder la machine. Une zone ATEX est présente sur la zone d'étude : aucune intervention ne sera réalisée à l'intérieur.

1.4 Informations sur les réseaux enterrés et la collecte des eaux pluviales

Plan synoptique des installations transmis ce jour par TEREGA.

Les plans des DICT sont également complets avec réseaux dessinés.

1.5 Bâtiments présents

Le chantier s'effectue exclusivement en extérieur

1.6 Activités pratiquées et installations potentiellement polluantes (sauf stockages)

Un séparateur à hydrocarbures

1.7 Stockages ou dépôts

Pas de stockage polluants (le stockage de gaz est situé dans l'aquifère naturel à plusieurs centaines de mètres de profondeur)

1.8 Présence de puits ou piézomètres

Aucun piézomètre captant la nappe de surface n'est présent sur site.

Les puits présents sur site mesurent plusieurs centaines de mètres de profondeur et ne sont pas utilisables par BURGEAP.

1.9 Rejets liés à l'activité du site

Rejet d'eaux pluviales qui passe par le séparateur à hydrocarbures.

1.10 Autres informations

Site recouvert d'une couche de forme calcaire.

1.11 En cas d'intervention

Hauteur min/max sous plafond	Non concerné, extérieur
Présence de dalle ? Epaisseur ?	Non concerné
Espaces encombrés ?	Non
Evacuation des gaz d'échappement (possibilité de créer un courant d'air ? Prévoir extracteur auto ?)	Non concerné
Machine adaptée intérieur/extérieur (portatif, géoprobe)	Non concerné

2. Visite hors site

2.1 Identification des usages hors site

Etablissements et activités au voisinage du site	Cocher	Localisation *	Commentaires et détails **
Agricole	X	Autour	Vignes au sud, pâtures, maïs
Forestier			
Industriel			
Commercial			
Etablissement sensible ***			Préciser type :
Habitat individuel	X	Autour	Récents / anciens Dispersé / urbain / périurbain Présence de jardins potagers ? (oui / non / possible) Présence de puits privés ? (oui / non / possible)
Habitat collectif			
Autre			

^{*} localisation par rapport au site (Nord, Sud,... Amont, Aval)

2.2 Milieu naturel

Proximite de cours d'eau ?	oui / non	Retenues colinaires	Usage agricole
Présence de sources ?	oui / non	amont/aval	Usage ?
Proximité d'une zone naturelle sensible ?	oui /non	Туре	amont/aval
Présence de captages ?	oui /non	Description ?	Usage ?

2.3 Autres observations

Proximité d'un axe routier important ? Non

Ruissellement? Non

Dénivelé important (pente générale vers...) ? Non

^{**} Noter les types de constructions (sur vide sanitaire, sous-sols, plain-pied...)

^{***} établissements scolaires, crèche, établissements sportifs, parcs, jardins publics, jardins ouvriers

▶ Recommandations sur les mesures d'urgence à prendre

Des mesures d'urgence sont-elles à prendre ? \square Oui \boxtimes Non Si oui, lesquelles :

Proposition de mesure d'urgence	Cocher	Commentaires et détails
Restriction d'accès au site, surveillance		Sans objet
Evacuation du site ou de ses abords		Sans objet
Enlèvement de sources de pollution (déchets, bidons fuyards)		Sans objet
Confinement ou recouvrement des sols		Sans objet
Mesures de protection ou limitation de l'usage des eaux de surface		Sans objet
Mesure de protection ou limitation de l'usage des eaux souterraines sur site ou hors site		Sans objet
Mesure de protection ou limitation de l'usage des sols (cultures notamment)		Sans objet
Bâtiments ou autre superstructure à démolir		Sans objet
Comblement de vides		Sans objet
Autres		Sans objet

Annexe 2. Propriétés physico-chimiques

Cette annexe contient 6 pages.

LEGENDE Volatilité : LEGENDE Solubilité :

++: S>100

++:Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) mg/l -: 1>S>0.01 mg/l

+: 1000 > Pv > 10 Pa (COV) --: 10-2 >P> 10-5 Pa (non COV) +: 100>S>1 mg/l --: S<0.01 mg/l

Volatilité solubilité Classement Mention de danger CIRC (IARC) EPA

METAUX ET METALLOIDES

Antimoine (Sb)	7440-36-0	non adequat	non adequat	SGH07, SGH09	H332, H302, H411	C2	-	-
Arsenic (As)	7440-38-2	non adequat	non adequat	SGH06, SGH09	H331, H301, H400, H410	C1A	1	Α
Baryum (Ba)	non adéquat	non adequat	Soluble dans l'éthanol ?	-	-	-	-	D
Cadmium (Cd)	7440-43-9	non adequat	non adequat	SGH06, SGH08, SGH09	H350, H341, H361fd, H330, H372, H400, H410	C1B/C2 M1B/M2 R1B/R2	1	prob canc
Chrome III (CrIII)	1308-38-9	non adequat	non adequat	-	-	-	3	D
Chrome VI (CrVI)	trioxyde de Cr 1333-82-0	non adequat	non adequat	SGH03, SGH05, SGH06, SGH08, SGH09	H271, H350, H340, H361f, H330, H311, H301, H372, H314, H334, H317, H410	C1A M1B R2	1	A (inh°) D (oral)
Cobalt (Co)	7440-48-4	non adequat	non adequat	SGH08	H334, H317, H413	C1B M2 R1B	2B	-
Cuivre (Cu)	7440-50-8	non adequat	non adequat	-	-	-	3	D
Etain (Sn)	non adéquat	non adequat	non adequat	-	-	-	-	-
Manganèse (Mn)	non adéquat	non adequat	non adequat	SGH07 (dioxyde)	H332, H302 (dioxyde)	-	-	D
Mercure (Hg)	7439-97-6	non adequat	non adequat	SGH06, SGH08, SGH09	H360D, H330, H372, H400, H410	R1B	3	CàD
Molybdène (Mo)	7439-98-7	non adequat	non adequat	trioxyde : SGH07, SGH08	Trioxyde : H351, H319, H335	trioxyde : C2	-	-
Nickel (Ni)	7440-02-0	non adequat	non adequat	SGH07, SGH08	H351, H372, H317, H412	C2	2B	Α
Plomb (Pb)	7439-92-1	non adequat	non adequat	SGH07, SGH08, SGH09	H360Df, H332, H373, H400, H410	R1A	2B	B2
Sélénium (Se)	7782-49-2	non adequat	non adequat	SGH06, SGH08	H331, H301, H373, H413	-	3	D
Thallium (TI)	7440-28-0	non adequat	non adequat	SGH06, SGH08	H330, H300, H373, H413	-	-	D
Vanadium (Va)	7440-62-2	non adequat	non adequat	-	-	-	3	D
Zinc (Zn)	7440-66-6 (poudre)	non adequat	non adequat	SGH02 (pyrophorique) SGH09	H250, H260 (pyrophorique) H400, H410	-	-	D
	HYDROCAR	BURES	AROM	ATIQUES	POLYCYCLIQ	UES	•	•
Naphtalène	91-20-3	+	+	SGH07, SGH08, SGH09	H351, H302, H400, H410	C2	2B	С
Acenaphtylène	208-96-8	-	+	-	-	-	-	D
Acenaphtène	83-29-9	-	+	-	-	-	-	-
Fluorène	86-73-7	-	+	-	-	-	3	D

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

+:100>S>1

+: 1000 > Pv > 10 Pa (COV) --: 10-2 >P> 10-5 Pa (non COV) mg/l --: S<0.01 mg/l

		, ,			,	2,		٥,
		Volatilité	solubilité	Classement	Manting de decem	classement o	cancérogér	néicité
	CAS n°R	Pv	S	symboles	Mention de danger	UE	CIRC (IARC)	EPA
Phénanthrène	85-01-8	-	+	-	-	-	3	D
Anthracène	120-12-7		-	-	-	-	3	D
Fluoranthène	206-44-0		-	-	-	-	3	D
Pyrène	129-00-0		-	-	-	-	3	D
Benzo(a)anthracène	56-55-3			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Chrysene	218-01-9		-	SGH08, SGH09	H350, H341, H400, H410	C1B M2	3	B2
benzo(b)fluoranthène	205-99-2			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
benzo(k)fluoranthène	207-08-9			SGH08, SGH09	H350, H400, H410	C1B	2B	B2
Benzo(a)pyrène	50-32-8			SGH07, SGH08,	H340, H350, H360FD, H317,	C1B M1B	1	Α
				SGH09	H400, H410	R1B		
Dibenzo(a,h)anthracène	53-70-3			SGH08, SGH09	H350, H400, H410	C1B	2A	B2
benzo(g,h,i) pérylène	191-24-2			-	-	-	3	D
indéno(1,2,3-c,d)pyrène	193-39-5		-	-	-	-	2B	B2

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

++:Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) | ++: \$>100 mg/l

+: 1000 > Pv > 10 Pa (COV) --: 10-2 > P> 10-5 Pa (non COV) +: 100> S>1 mg/l --: S<0.01 mg/l

Volatilité solubilité Classement Mention de danger CIRC (IARC) EPA

COMPOSES AROMATIQUES MONOCYCLIQUES

benzène	71-43-2	++	++	SGH02, SGH07, SGH08	H225, H350, H340, H372, H304, H319, H315	C1A M1B	1	А
toluène	108-88-3	++	++	SGH02, SGH07, SGH08	H225, H361d, H304, H373, H315, H336	R2	3	D
ethylbenzène	100-41-4	+	++	SGH02, SGH07	H225, H332	=	2B	-
xylènes	1330-20-7	+	++	SGH02, SGH07	H226, H332, H312, H315	-	3	-
styrène	100-42-5	+	++	SGH02, SGH07	H226, H332, H319, H315	-	2B	-
cumène (isopropylbenzène)	98-82-8	+	+	SGH02, SGH07, SGH08, SGH09	H226, H304, H335, H411	-	2B	D
mesitylène (1,3,5 Triméthylbenzène)	108-67-8	+	+	SGH02, SGH07, SGH09	H226, H335, H411	-		-
pseudocumène (1,2,4 Triméthylbenzène)	95-63-6	+	+	SGH02, SGH07, SGH09	H226, H332, H319, H335, H315, H411	-	-	-

COMPOSES ORGANO-HALOGENES VOLATILS

PCE (tétrachloroéthylène)	127-18-4	++	++	SGH08, SGH09	H351, H411	C2	2A	B1
TCE (trichloroéthylène)	79-01-6	++	++	SGH07, SGH08	H350, H341, H319, H315, H336, H412	C1B M2	1	Α
cis 1,2DCE (dichloroéthylène)	156-59-2	++	++	SGH02, SGH07	H225, H335, H412	-	-	D
trans 1,2DCE (dichloroéthylène)	156-60-5	1	++	SGH02, SGH07	H225, H335, H412	-	-	D
1,1 DCE (1,1 dichloroéthylène)	75-35-4	++	++	SGH02, SGH07, SGH08	H224, H351, H332	C2	3	С
VC (chlorure de vinyle)	75-01-4	++	++	SGH02, SGH08	H220, H350	C1A	1	Α
1,1,2 trichloroéthane	79-00-5	++	++	SGH07, SGH08	H351, H332, H312, EUH066	C2	3	С
1,1,1 trichloroéthane	71-55-6	++	++	SGH07	H332, EUH059	-	3	D
1,2 dichloroéthane	107-06-2	++	++	SGH02, SGH07, SGH08.	H225, H350, H302, H319, H335, H315	C1B	2В	B2
1,1 dichloroéthane	75-34-3	++	++	SGH02, SGH07	H225, H302, H319, H335, H412	-	-	С
Tétrachlorométhane	56-23-5	++	++	SGH06, SGH08	H351, H331, H311, H301, H372, H412, EUH059	C2	2B	B2
TCmA (trichlorométhane ou chloroforme)	67-66-3	++	++	SGH07, SGH08	H351, H302, H373, H315	C2	2B	B2
dichlorométhane	75-09-2	++	++	SGH08, SGH09	H351	C2	2B	B2
trichlorobenzènes	87-61-1 120-82-1 108-70-3	+	+	SGH07, SGH09	H302, H315, H400, H410	-	-	(1,2,4) D
1,2 dichlorobenzène	95-50-1	+	+	SGH07, SGH09	H302, H319, H335, H315, H400, H410	-	3	D
1,3 dichlorobenzène	541-73-1	+	++	-	-	-	3	D
1,4 dichlorobenzène	106-46-7	+	+	SGH08, SGH09	H351, H319, H400, H410	C2	2B	-

-: 1>S>0.01 mg/l

LEGENDE Volatilité : LEGENDE Solubilité :

++:Pv > 1000 PA (COV) -: 10 >P> 10-2 Pa (non COV) ++: S>100 mg/l

+:100>S>1

+: 1000 > Pv > 10 Pa (COV) --: S<0.01 mg/l --: S<0.01 mg/l

		Volatilité	solubilité	Classement	Mention de danger	classement c	ancérogér	iéicité
	CAS n°R	Pv	S	symboles	Hendon de danger	UE	CIRC (IARC)	EPA
chlorobenzène	108-90-7	++	++	SGH02, SGH07, SGH09	H226, H332, H411	-	-	D

HYDROCARBURES SUIVANT LES TPH

Aliphatic nC>5-nC6	non adéquat	++	+				
Aliphatic nC>6-nC8	II .	++	+		tout type d'hydrocarbures : H350, H340, H304	classement fonction des hydrocarbures	
Aliphatic nC>8-nC10	"	+	-	white spirit, essences spéciales, solvants aromatiques légers, pétroles lampants (kérosène): SGH08			
Aliphatic nC>10-nC12	"	+	-				
Aliphatic nC>12-nC16	"	-					
Aliphatic nC>16-nC35	"	-					
Aliphatic nC>35	II .						
Aromatic nC>5-nC7 benzène	"	++	++				
Aromatic nC>7-nC8 toluène	"	++	++				
Aromatic nC>8-nC10	"	+	+	SGH08			
Aromatic nC>10-nC12	"	+	+				
Aromatic nC>12-nC16	"	-	+				
Aromatic nC>16-nC21	"	-	-				
Aromatic nC>21-nC35	ıı ıı						

Annexes

MENTIONS DE DANGER

28 mentions de danger physique

- H200 : Explosif instable
- H201: Explosif; danger d'explosion en masse H202 : Explosif ; danger sérieux de projection
- H203 : Explosif : danger d'incendie, d'effet de souffle ou de projection
- H204: Danger d'incendie ou de projection
- H205 : Danger d'explosion en masse en cas d'incendie
- H220 · Gaz extrêmement inflammable
- H221: Gaz inflammable
- H222: Aérosol extrêmement inflammable
- H223: Aérosol inflammable
- H224 : Liquide et vapeurs extrêmement inflammables
- H225 : Liquide et vapeurs très inflammables
- H226: Liquide et vapeurs inflammables
- H228: Matière solide inflammable

- H240 : Peut exploser sous l'effet de la chaleur
- H241 : Peut s'enflammer ou exploser sous l'effet de la chaleur
- H242 : Peut s'enflammer sous l'effet de la chaleur
- H250 : S'enflamme spontanément au contact de l'ai
- H251 : Matière auto-échauffante ; peut s'enflammer
- H252 : Matière auto-échauffante en grandes quantités : peut s'enflammer
- H260 : Dégage au contact de l'eau des gaz inflammables qui peuvent s'enflammer spontanément
- H261 : Dégage au contact de l'eau des gaz
- H270: Peut provoquer ou aggraver un incendie: comburant
- H271: Peut provoquer un incendie ou une explosion; comburant puissant
- H272: Peut aggraver un incendie; comburant
- H280 : Contient un gaz sous pression ; peut exploser sous l'effet de la chaleur
- H281 : Contient un gaz réfrigéré ; peut causer des brûlures ou blessures cryogéniques
- H290 : Peut être corrosif pour les métaux

38 mentions de danger pour la santé

- H300: Mortel en cas d'ingestion
- H301: Toxique en cas d'ingestion
- H302: Nocif en cas d'ingestion
- H304 : Peut être mortel en cas d'ingestion et de pénétration dans les voies respiratoires
- H310: Mortel par contact cutané
- H311: Toxique par contact cutané
- H312: Nocif par contact cutané
- H314 : Provoque des brûlures de la peau et des lésions oculaires graves
- H315: Provoque une irritation cutanée

- H317: Peut provoquer une allergie cutanée
- H318: Provoque des lésions oculaires graves
 - H319 : Provoque une sévère irritation des yeux
 - H330: Mortel par inhalation
- H331: Toxique par inhalation
- H332: Nocif par inhalation
- H334: Peut provoquer des symptômes allergiques ou d'asthme ou des difficultés respiratoires par inhalation
- . H335 : Peut irriter les voies respiratoires
- H336: Peut provoquer somnolence ou vertiges
- H340 : Peut induire des anomalies génétiques <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H341 : Susceptible d'induire des anomalies génétiques <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même dangert>
- H350: Peut provoquer le cancer <indiquer la voie d'exposition s'il est H370: Risque avéré d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils sont formellement prouvé qu'aucune autre voie d'exposition ne conduit au même connus> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne danger> conduit au même danger>
- H351: Susceptible de provoquer le cancer <indiquer la voie d'exposition s'il H371: Risque présumé d'effets graves pour les organes <ou indiquer tous les organes affectés, s'ils est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même sont connus> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition autre voie d'exposition autre voie d'exposition au le contrait de la contrait de la contrait de la danger>
- autre voie d'exposition ne conduit au même danger>
- autre voie d'exposition ne conduit au même dangers
- H362 : Peut être nocif pour les bébés nourris au lait maternel
- ne conduit au même danger> H360 : Peut nuire à la fertilité ou au foetus <indiquer l'effet spécifique s'îl » H372 : Risque avéré d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont est connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>
- H361 : Susceptible de nuire à la fertilité ou au foetus <indiquer l'effet s'il est
 H373 : Risque présumé d'effets graves pour les organes <indiquer tous les organes affectés, s'ils sont connu> <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune connus> à la suite d'expositions répétées ou d'une exposition prolongée <indiquer la voie d'exposition s'il est formellement prouvé qu'aucune autre voie d'exposition ne conduit au même danger>

Pour certaines mentions de danger pour la santé des lettres sont ajoutées au code à 3 chiffres :

- H350i: Peut provoquer le cancer par inhalation
- H360F : Peut nuire à la fertilité
- H360D : Peut nuire au foetus H361f : Susceptible de nuire à la fertilité
- H361d : Susceptible de nuire au foetus
- H360FD: Peut nuire à la fertilité. Peut nuire au foetus
- H360Fd: Peut nuire à la fertilité. Susceptible de nuire au foetus
- H361fd : Susceptible de nuire à la fertilité. Susceptible de nuire au foetus
- H360Df: Peut nuire au foetus. Susceptible de nuire à la fertilité.
- ▶ 5 mentions de danger pour l'environnement
- H400 : Très toxique pour les organismes aquatiques
- H410 : Très toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H411 : Toxique pour les organismes aquatiques, entraîne des effets néfastes à long terme
- H412 : Nocif pour les organismes aquatiques, entraıne des effets néfastes à long terme
- H413: Peut être nocif à long terme pour les organismes aquatiques

Symboles de danger

- SHG01 : Explosif (ce produit peut exploser au contact d'une famme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, d'un choc ou de frottements).
- SGH02: Inflammable (Le produit peut s'enflammer au contact d'une flamme, d'une étincelle, d'électricité statique, sous l'effet de la chaleur, de frottements, au contact de l'air ou au contact de l'eau en dégageant des gaz inflammables).
- SGH03: Comburant (peut provoquer ou aggraver un incendie peut provoquer une explosion en présence de produit inflammable).
- SGH04: Gaz sous pression (peut exploser sous l'effet de la chaleur (gaz comprimé, liquéfié et dissous) peut causer des brûlures ou blessures liées au froid (gaz liquéfiés réfrigérés).
- SGH05: Corrosif (produit qui ronge et peut attaquer ou détruire des métaux peut provoquer des brûlures de la peau et des lésions aux yeux en cas de contact ou de projection).
- SGH06: Toxique ou mortel (le produit peut tuer rapidement empoisonne rapidement même à faible dose).
- SGH07: Dangereux pour la santé (peut empoisonner à forte dose peut irriter la peau, les yeux, les voies respiratoires peut provoquer des allergies cutanées peut provoquer somnolence ou vertige – produit qui détruit la couche d'ozone).
- SGH08 : Nuit gravement pour la santé (peut provoquer le cancer, modifier l'ADN, nuire à la fertilité ou au fœtus, altérer le fonctionnement de certains organes peut être mortele en cas d'ingestion et de pénétration dans les voies respiratoires – peut provoquer des difficultés respiratoires ou des allergies respiratoires).
- SGH09: Dangereux pour l'environnement (produit polluant proyoque des effets néfastes à court et/ou long terme sur les organismes des milieux aquatiques).

Bap290/20

De Classification en termes de cancérogénicité

UE	US-EPA	CIRC		
C1 (H350 ou H350i) : cancérogène avéré ou présumé l'être :				
C1A: Substance dont le potentiel cancérogène pour l'être humain est avéré	A : Preuves suffisantes chez l'homme	1 : Agent ou mélange cancérigène pour l'homme		
C1B : Substance dont le potentiel cancérogène pour l'être humain est supposé				
	B1 : Preuves limitées chez l'homme			
C2 : Substance suspectée d'être cancérogène pour l'homme	B2 : Preuves non adéquates chez l'homme et preuves suffisantes chez l'animal	2A : Agent ou mélange probablement cancérigène pour l'homme		
Carc.3 : Substance préoccupante pour l'homme en raison d'effets cancérogènes possibles (R40)	C : Preuves inadéquates chez l'homme et preuves limitées chez l'animal	2B : Agent ou mélange peut-être cancérigène pour l'homme		
	D : Preuves insuffisantes chez l'homme et l'animal	3 : Agent ou mélange inclassables quant-à sa cancérogénicité pour l'homme		
	E : Indications d'absence de cancérogénicité chez l'homme et chez l'animal	4 : Agent ou mélange probablement non cancérigène chez l'homme		

Classification en termes de mutagénicité

UE

M1 (H340): Substance dont la capacité d'induire des mutations héréditaires est avérée ou qui sont à considérer comme induisant des mutations héréditaires dans les cellules germinales des êtres humains. Substance dont la capacité d'induire des mutations héréditaires dans les cellules germinales des êtres humains est avérée. M1A : Classification fondée sur des résultats positifs d'études épidémiologiques humaines. Substance considérée comme induisant des mutations héréditaires dans les cellules germinales des êtres humains.

M1B : Classification fondée sur des essais in vivo de mutagénicité sur des cellules germinales et somatiques et qui ont donné un ou des résultats positifs et sur des essais qui ont montré que la substance a des effets mutagènes sur les cellules germinales humaines, sans que la transmission de ces mutations à la descendance n'ait été établie.

M2 (H341): Substance préoccupantes du fait qu'elle pourrait induire des mutations héréditaires dans les cellules germinales des êtres humains.

▶ Classification en termes d'effets reprotoxiques

	UE
R1 (H360 ou H360F ou H360D ou H360FD ou H360Fd	R1A : Substance dont la toxicité pour la reproduction humaine est avérée. La classification d'une substance dans cette catégorie s'appuie largement sur des études humaines.
ou H360fD) : Reprotoxique avéré ou présumé	R1B: Substance présumée toxique pour la reproduction humaine. La classification d'une substance dans cette catégorie s'appuie largement sur des données provenant d'études animales.

R2 (H361 ou H361f ou H361f ou H361fd): Substance suspectée d'être toxique pour la reproduction humaine. Les substances sont classées dans cette catégorie lorsque les résultats des études ne sont pas suffisamment probants pour justifier une classification dans la catégorie 1 mais qui font apparaître un effet indésirable sur la fonction sexuelle et la fertilité ou sur le développement.

Annexe 3. Fiches d'échantillonnage des sols

Cette annexe contient 8 pages.

V G	INGER				TEREGA - Site de IZAUTE (32)				Annexe 3
BU	RGEAP			ETC	HE D'ÉCHANTILLONNAGE D	NE SOLS				CESISO210821
							1			RESISO12707
	ge n° :	S1			int (société / intervenant):	TEMSOL		_	<u>échantillon :</u>	٦
	nant BURGEAP :	FLBA			<u> </u>	ere mécanique		-	_	moyen
Date :	12/04/2021 on météorologique :	Ensoleillé			r atteinte (m/sol) : le forage (mm) & gaine :	2 150		L	composite, preciser i	es sous échantillons :
Conditio	in meteorologique .	LIISOICIIIC			e terrain: OUI	150	Préparat	ion c	le l'échantillon : x	aucune
Localisa	tion du sondage - Lam	bert 93		PID *	x Réf. Matériel : PID BDX 1				homogénéisation	tri (<0,5cm / <2cm)
X :	449596,15	Y: 6304070,99		XRF	Réf. Matériel :				autre:	_ , , , ,
		Z (sol) - NGF : 122,3		Tubes réad	tifs Préciser tubes :		Méthode	d'éc	chantillonnage :	
				Autre	Préciser :				emporte pièce (plast	ique / autre)
		etre proche (si présent) :		* mesure I	PID de l'air ambiant au poste d'échan	itillonnage :			truelle / pelle à main	/ autre
	Pas de piézomètre sur	site			0 ppm		Conditio	_	nent d'échantillons :	
c 1	/ L	· NON			validité (indiquez les références) :			_	flacon sol brut + flac	
Sondag Remarq	e pour <u>échantillons tém</u>	noins : NON		Doublons :	Sans objet nanol : Sans objet			X	flacon / pot sol brut sac	autre:
	<u>ues</u> . Echantillon de surface	utilisé également nour		Laboratoire		EUROFINS	Conserv	 ation	des échantillons :	Jaude
	réaliser l'échantillon co				/transporteur): 13/04/21	Chronopost		_	glacière	autre:
	Tourist Tourisment Co				it: bureau / site / autre:	-		Ê	carton]
	cou	PE GÉOLOGIQUE			POLLUTION				ÉCHANTILLO	ON
Prof. (m)		scription humidité, dalle, remblais)	Venues d'eau	Taux de compaction	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer)	Analyses de terrain	Ν°			échantillon prélevé es éléments écartés)
(111)			u cuu	compaction	corps ctrangers (plastique, macherer)	terrain			(Si tri, maiquer it	es cicinents ecuresy
0.05	Graviers/ co	ncassé sur 5cm	-							
=										
_										
_										
_						0	S1	а	0,0	0-1,0
_	Argile marron lég	gèrement graveleuse						-		
_										
_										
_										
1.0										
_										
=										
_										
_										
_	Limons b	runs argileux				0.5	S1	b	1,0	0-2,0
_										
_										
_										
_										
2.0										
_										
=										
=										
_										
_										
_										
_										
_						-				
_										
3.0						1				
=										
_						4				
_										
_										
_						-				
_										
=										
_						1				
=										
4.0										

	GINGER URGEAP				TEREGA - Site de IZAUTE (32)				Annexe 3
В	URGEAP			FIC	HE D'ÉCHANTILLONNAGE D	OF SOLS				CESISO210821
							I			RESISO12707
	ge n°:	S2			<u>int (société / intervenant)</u> : de sondage: Tariè	TEMSOL		on d'	<u>échantillon :</u> ponctuel x] mayon
Date :	nant BURGEAP : 12/04/2021	FLBA			r atteinte (m/sol) :	ère mécanique 2				moyen es sous échantillons :
	on météorologique :	Ensoleillé			le forage (mm) & gaine :	150		L	composite, preciser	es sous certamens :
					e terrain : OUI		Préparat	ion c	de l'échantillon : x	aucune
Localisa	<u>tion</u> du sondage - Lam	bert 93		PID *	x Réf. Matériel : PID BDX 1				homogénéisation	tri (<0,5cm / <2cm)
X :	449610,63	Y: 6304071,06		XRF	Réf. Matériel :				autre:	
		Z (sol) - NGF : 123,2		Tubes réad	⊢		Méthode		chantillonnage :	. ,
Nivonu	do nanno dlun niózomà	etre proche (si présent) :		Autre	PID de l'air ambiant au poste d'échan	tillonnago i		_	emporte pièce (plast truelle / pelle à main	
	Pas de piézomètre sur			inesure i	0 ppm	itilioillage .	Condition		nent d'échantillons :	i / autre
	rus de piezometre sur	Site		Contrôle /	validité (indiquez les références) :		Cortaicio	_	flacon sol brut + flac	con méthanol
Sondage	e pour <u>échantillons tém</u>	noins : NON		Doublons :				х	flacon / pot sol brut	seul (PE / verre)
Remarq	ues :			Blanc méth	nanol : Sans objet				sac	autre:
	Echantillon de surface			Laboratoire		EUROFINS		_	des échantillons :	7
	réaliser l'échantillon co	mposite ISDI N			/transporteur): 13/04/21	Chronopost		Х	glacière	autre:
	COLL	PE GÉOLOGIQUE		Enlevemer	t : bureau / site / autre : POLLUTION	-			carton ÉCHANTILLO	ON .
Prof.		scription	Venues	Taux de	Observations (aspect, couleur, odeur)	Analyses de	N°		Description de l'	échantillon prélevé
(m)	(granulométrie, texture,	humidité, dalle, remblais)	d'eau	compaction	Corps étrangers (plastique, machefer)	terrain	įν		(si tri, indiquer le	es éléments écartés)
0.05	Graviers/ co	ncassé sur 5cm								
_										
_										
_										
_						0	S2	а	0,0	0-1,0
_								_		
_										
_										
_										
1.0										
	Argile marron li	moneuse compacte								
_										
_										
_										
_						0				
_										
_										
=										
_										
2.0										
_										
_						-				
_										
_										
_										
_										
_						-				
3.0										
]										
]										
\exists										
7										
=										
=						-				
=										
4.0										

V G	INGER				TEREGA - Site de IZAUTE (32)				Annexe 3
BU	RGEAP			FIC	HE D'ÉCHANTILLONNAGE D	F SOLS				CESISO210821
				1			1			RESISO12707
	ge n° :	S3			int (société / intervenant) :	TEMSOL		_	<u>échantillon :</u>	7
Interver Date :	nant BURGEAP : 12/04/2021	FLBA			de sondage : Tariè r atteinte (m/sol) :	ere mécanique 2		-	<u> </u>	moyen es sous échantillons :
	n météorologique :	Ensoleillé			de forage (mm) & gaine :	150		L	composite, preciser i	es sous echantillons .
					<u>e terrain :</u> OUI		Préparat	ion c	le l'échantillon : x	aucune
Localisa	<u>tion</u> du sondage - Lam	bert 93		PID *	x Réf. Matériel : PID BDX 1				homogénéisation	tri (<0,5cm / <2cm)
X :	449587,46	Y: 6304052,78		XRF	Réf. Matériel :				autre:	_
		Z (sol) - NGF : 122,85		Tubes réad			Méthode	_	chantillonnage:	
				Autre	Préciser :			_	emporte pièce (plast	
	de nappe d'un piezome Pas de piézomètre sur	etre proche (si présent) :		* mesure I	PID de l'air ambiant au poste d'échan	tillonnage :	Condition		truelle / pelle à main nent d'échantillons :	/ autre
	ras de piezometre sur	Site		Contrôle /	0 ppm validité (indiquez les références) :		Coridition	_	flacon sol brut + flac	on méthanol
Sondage	e pour <u>échantillons tén</u>	noins : NON		Doublons :				_	flacon / pot sol brut	
Remarq	-			Blanc méth	nanol : Sans objet				sac	autre:
	Echantillon de surface	utilisé également pour		Laboratoire	e (nom) :	EUROFINS	Conserva	ation	des échantillons :	-
	réaliser l'échantillon co	omposite ISDI N			/transporteur): 13/04/21	Chronopost		х	glacière	autre:
	601	IDE CÉCL OCTOUE		Enlèvemer	t : bureau / site / autre :	-			carton	N
Prof.		IPE GÉOLOGIQUE scription	Venues	Taux de	POLLUTION Observations (aspect, couleur, odeur)	Analyses de			ÉCHANTILLO Description de l'	échantillon prélevé
(m)		, humidité, dalle, remblais)	d'eau	compaction	Corps étrangers (plastique, machefer)	terrain	N°			es éléments écartés)
0.05	Graviers/ co	oncassé sur 5cm								
=										
_										
_										
=									0.0	0-1,0
=						0	S3	а	0,0	3 1,0
=										
_										
_										
_				Compact						
1.0	Limons argileu	x marron/ocre secs		+						
_	-									
_										
_										
_										
_						0.3				
_										
_										
_										
_										
2.0										
_										
_										
_										
=										
_										
_										
_										
_										
3.0										
=										
=										
7										
=										
7										
=										
4.0										

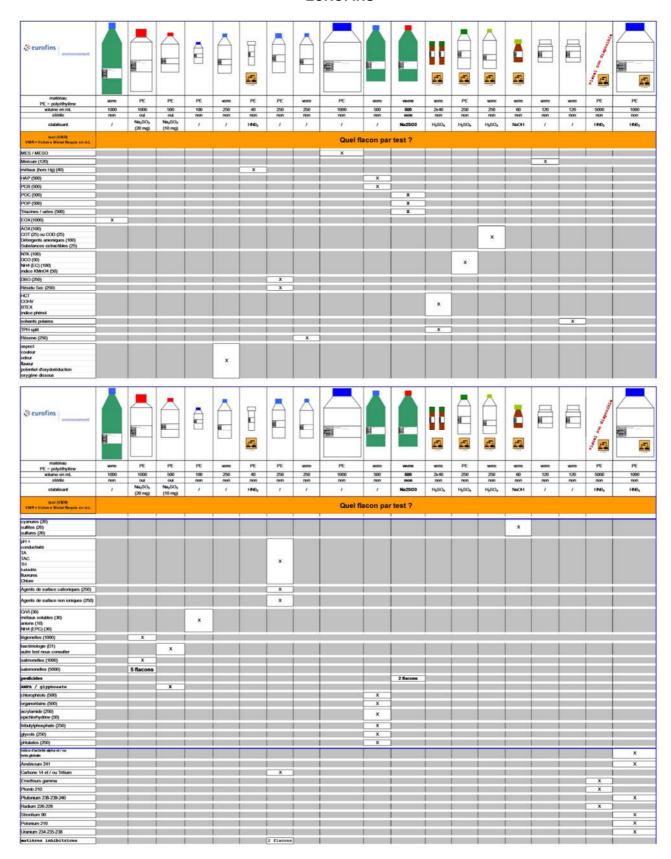
V G	INGER				TEREGA - Site de IZAUTE (32)				Annexe 3
BU	RGEAP			ETC	HE D'ÉCHANTILLONNAGE D	E SOLS				CESISO210821
				1			1			RESISO12707
	ge n° :	S4			<u>int</u> (société / intervenant) :			_	<u>échantillon :</u>	٦
	nant BURGEAP :	FLBA			<u>-</u>	re mécanique		-	<u> </u>	moyen
Date :	12/04/2021 on météorologique :	Ensoleillé			r atteinte (m/sol) : le forage (mm) & gaine :	2 150			composite, preciser i	es sous échantillons :
Conditio	in meteorologique .	Liisolellie			e terrain: OUI	130	Préparat	ion c	le l'échantillon : x	aucune
Localisa	tion du sondage - Lam	bert 93		PID *	x Réf. Matériel : PID BDX 1			_	homogénéisation	tri (<0,5cm / <2cm)
X :	449608,33	Y: 6304052,78		XRF	Réf. Matériel :			-	autre:	_ ` ` ` ` `
		Z (sol) - NGF : 123,3		Tubes réad	tifs Préciser tubes :		Méthode	d'éc	chantillonnage :	
				Autre	Préciser :				emporte pièce (plast	ique / autre)
		etre proche (si présent) :		* mesure F	PID de l'air ambiant au poste d'échan	tillonnage :			truelle / pelle à main	/ autre
	Pas de piézomètre sur	site			0 ppm		Condition	_	nent d'échantillons :	
c .	() (1)	· NON			validité (indiquez les références) :			_	flacon sol brut + flac	
Sondag Remarq	e pour <u>échantillons tém</u>	noins : NON		Doublons :	Sans objet nanol : Sans objet			X	flacon / pot sol brut sac	autre:
		utilisé également pour		Laboratoire		EUROFINS	Conserva	ation	des échantillons :	Jaude
	réaliser l'échantillon co				/transporteur): 13/04/21	Chronopost		_	glacière	autre:
					it : bureau / site / autre :	-			carton]
	cou	PE GÉOLOGIQUE			POLLUTION			-	ÉCHANTILLO	ON
Prof. (m)		scription humidité, dalle, remblais)	Venues d'eau	Taux de compaction	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer)	Analyses de terrain	N°			échantillon prélevé es éléments écartés)
(111)			u cau	compaction	corps et angers (plastique, macherer)	terrain			(Si tri, indiquer it	es elements ecurtes)
0.05	Graviers/ co	oncassé sur 5cm	_							
_				:						
_										
_						0	S4	а	0,0	0-1,0
_	Limons argileux	marron/ocre friables					•	_		
_										
_			-							
=										
1.0										
_										
_										
				Commont						
_	Argil	e marron		Compact +		0				
_										
_										
_										
_										
2.0										
_										
_										
_										
_										
_										
_										
_										
3.0										
=										
=						-				
						1				
4.0						_				

G	INGER				TEREGA - Site de IZAUTE (32)				Annexe 3
BU	IRGEAP			FIC	HE D'ÉCHANTILLONNAGE D	F SOLS				CESISO210821
							Π			RESISO12707
	ige n° :	S5			int (société / intervenant) :			_	<u>échantillon :</u>	٦
Interve	nant BURGEAP : 12/04/2021	FLBA			de sondage : Tariè r atteinte (m/sol) :	ere mécanique 2		-	<u> </u>	moyen es sous échantillons :
	n météorologique :	Ensoleillé			le forage (mm) & gaine :	150			composite, preciser i	es sous echanidions .
Corraition	on meteorologique i	2.13316.1116			e terrain: OUI	150	Préparat	ion c	le l'échantillon : x	aucune
Localisa	<u>ition</u> du sondage - Lam	bert 93		PID *	x Réf. Matériel : PID BDX 1				homogénéisation	tri (<0,5cm / <2cm)
X :	449628,00	Y: 6304036,5		XRF	Réf. Matériel :				autre:	_
		Z (sol) - NGF : 123,21		Tubes réad			Méthode	_	chantillonnage :	
				Autre	Préciser :			_	emporte pièce (plast	
		etre proche (si présent) :		* mesure l	PID de l'air ambiant au poste d'échan	tillonnage :	C diki		truelle / pelle à main	/ autre
	Pas de piézomètre sur	site		Contrôlo /	0 ppm validité (indiquez les références) :		Condition	_	nent d'échantillons : flacon sol brut + flac	on móthanol
Sondag	e pour <u>échantillons tém</u>	noins : NON		Doublons :				_	flacon / pot sol brut	
Remarq				-	nanol : Sans objet				sac	autre :
		utilisé également pour		Laboratoire		EUROFINS	Conserva	ation	des échantillons :	_
	réaliser l'échantillon co	omposite ISDI S		Envoi (date	/transporteur): 13/04/21	Chronopost		x	glacière	autre:
		,		Enlèvemer	t : bureau / site / autre :	-			carton	
Durf		IPE GÉOLOGIQUE	1		POLLUTION				ÉCHANTILLO	
Prof. (m)		scription , humidité, dalle, remblais)	Venues d'eau	Taux de compaction	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer)	Analyses de terrain	N°			échantillon prélevé es éléments écartés)
0.05	Graviers/ co	oncassé sur 5cm								
0.05_			Ī							
_										
_										
_										2.4.0
_	Argile marron léo	gèrement graveleuse				0	S5	а	0,0	0-1,0
_		g								
_										
_										
=										
1.0										
_										
_										
_										
_	Limor	ns friables		Peu compact		0				
				,						
_										
_										
_										
2.0										
_										
_										
_										
_										
_										
_										
=										
3.0						-				
_										
_										
_						1				
=										
=						4				
=										
=										
_						†				
_										
4.0										

V G	INGER				TEREGA - Site de IZAUTE (32)				Annexe 3
BU	RGEAP			ETC	HE D'ÉCHANTILLONNAGE D	E COLC				CESISO210821
				FIC	HE D ECHANIILLUNNAGE D		1			RESISO12707
	ge n° :	S6			<u>int</u> (société / intervenant):			on d'	<u>échantillon :</u>	7
	nant BURGEAP :	FLBA		· ·		re mécanique		-	<u> </u>	moyen
Date :	12/04/2021				r atteinte (m/sol) :	2			composite, préciser l	es sous échantillons :
Conditio	on météorologique :	Ensoleillé			le forage (mm) & gaine : <u>e terrain :</u> OUI	150	Dróparat	ion c	le l'échantillon : x	aucune
I ocalisa	tion du sondage - Lam	hert 93		PID *	x Réf. Matériel : PID BDX 1		гтерагас		homogénéisation	tri (<0,5cm / <2cm)
X :	449630,81	Y: 6304020,02		XRF	Réf. Matériel :			-	autre :	un (10/3cm / 12cm)
	, .	Z (sol) - NGF : 123,13		Tubes réad	⊢		Méthode	d'éc	chantillonnage:	
				Autre	Préciser :				emporte pièce (plast	ique / autre)
Niveau	de nappe d'un piézomè	etre proche (si présent) :		* mesure l	PID de l'air ambiant au poste d'échan	tillonnage :		х	truelle / pelle à main	/ autre
	Pas de piézomètre sur	site			0 ppm		Condition	nnen	nent d'échantillons :	
					validité (indiquez les références) :			_	flacon sol brut + flac	
	e pour <u>échantillons tém</u>	noins : NON		Doublons :	•			х	flacon / pot sol brut	7
Remarq		utilisé ésploment nous			nanol : Sans objet	FUDOEING	Canaan		sac	autre:
	réaliser l'échantillon co	utilisé également pour		Laboratoire	(nom) : (transporteur) : 13/04/21	EUROFINS Chronopost		_	des échantillons : glacière	autre:
	realiser recriation co	imposite 13D1 3			rt : bureau / site / autre :	-		Ê	carton	Jautie
	COU	IPE GÉOLOGIQUE			POLLUTION			-	ÉCHANTILLO	ON
Prof.		scription	Venues	Taux de	Observations (aspect, couleur, odeur)	Analyses de	N°			échantillon prélevé
(m)	(granulométrie, texture,	, humidité, dalle, remblais)	d'eau	compaction	Corps étrangers (plastique, machefer)	terrain			(si tri, indiquer le	es éléments écartés)
0.05	Graviers/ co	oncassé sur 5cm								
_										
_										
_										
_				Compact		0	S6	_	0,0	0-1,0
=	Argile mar	ron limoneuse		+			30	а		
_										
_				-						
_										
_										
1.0				-						
_										
_										
_										
_	Limons	s brun/ocre		Peu compact		0				
_										
_										
=										
_										
2.0										
_										
=										
_										
_										
_						=				
_										
_										
_										
_										
3.0										
5.0										
=										
=										
=										
=						1				
4.0						1				

G	INGER				TEREGA - Site de IZAUTE (32)				Annexe 3
BU	RGEAP			FIC	HE D'ÉCHANTILLONNAGE D	F SOLS				CESISO210821
				1			1			RESISO12707
	ge n° :	S7			int (société / intervenant) :			_	<u>échantillon :</u>	٦
Interver Date :	nant BURGEAP : 12/04/2021	FLBA		· ·	de sondage : Tariè r atteinte (m/sol) :	re mécanique 2		-	<u> </u>	moyen es sous échantillons :
	n météorologique :	Ensoleillé			le forage (mm) & gaine :	150			composite, preciser i	es sous echanidions .
Corraitio	etcorolog.que :	2.130.6.110			e terrain: OUI	150	Préparat	ion c	le l'échantillon : x	aucune
Localisa	tion du sondage - Lam	bert 93		PID *	x Réf. Matériel : PID BDX 1				homogénéisation	tri (<0,5cm / <2cm)
X :	449611,53	Y: 6304007,86		XRF	Réf. Matériel :				autre:	_
		Z (sol) - NGF : 123,47		Tubes réad	rtifs Préciser tubes :		Méthode	_	chantillonnage :	
				Autre	Préciser :			_	emporte pièce (plast	
		etre proche (si présent) :		* mesure l	PID de l'air ambiant au poste d'échan	tillonnage :	C diki		truelle / pelle à main	/ autre
	Pas de piézomètre sur	site		Contrôlo /	0 ppm validité (indiquez les références) :		Condition	_	nent d'échantillons : flacon sol brut + flac	on móthanol
Sondage	e pour <u>échantillons tém</u>	noins : NON		Doublons :				_	flacon / pot sol brut	
Remarq	-				nanol : Sans objet				sac	autre :
		utilisé également pour		Laboratoire		EUROFINS	Conserva	ation	des échantillons :	_
	réaliser l'échantillon co	mposite ISDI S		Envoi (date	/transporteur): 13/04/21	Chronopost		x	glacière	autre:
				Enlèvemer	t : bureau / site / autre :	-			carton	
Duref		PE GÉOLOGIQUE	1		POLLUTION	T			ÉCHANTILLO	
Prof. (m)		scription humidité, dalle, remblais)	Venues d'eau	Taux de compaction	Observations (aspect, couleur, odeur) Corps étrangers (plastique, machefer)	Analyses de terrain	N°			échantillon prélevé es éléments écartés)
0.05	Graviers/ co	ncassé sur 5cm								
0.03										
				Commont						2.4.0
_	Araile lim	noneuse ocre		Compact +		0	S7	а	0,0	0-1,0
										
1.0										
=										
_										
_	Limons o	ocres friables		Peu compact		0				
-										
=										
=										
_										
2.0										
_										
_										
-										
_										
_						-				
_										
_										
3.0						-				
=										
						1				
						1				
						1				
4.0										

G	INGER				TEREGA - Site de IZAUTE (32)				Annexe 3
BU	RGEAP			FIC	HE D'ÉCHANTILLONNAGE D	F SOLS				CESISO210821
				1			1			RESISO12707
	ge n° :	S8			int (société / intervenant) :				<u>échantillon :</u> l	7
Interver Date :	nant BURGEAP : 12/04/2021	FLBA		· ·	de sondage : Tariè r atteinte (m/sol) :	re mécanique 2		-	<u> </u>	moyen es sous échantillons :
	12/04/2021 on météorologique :	Ensoleillé			de forage (mm) & gaine :	150			composite, preciser i	es sous echanilions .
Contain	etco. o.og.que .	2.13316.1116			e terrain: OUI	150	Préparat	ion c	le l'échantillon : x	aucune
Localisa	tion du sondage - Lam	bert 93		PID *	x Réf. Matériel : PID BDX 1				homogénéisation	tri (<0,5cm / <2cm)
X :	449605,15	Y: 6304027,06		XRF	Réf. Matériel :				autre:	_
		Z (sol) - NGF : 123,16		Tubes réad	├		Méthode	_	chantillonnage :	
				Autre	Préciser :			_	emporte pièce (plast	
		etre proche (si présent) :		* mesure l	PID de l'air ambiant au poste d'échan	tillonnage :	C diki		truelle / pelle à main	/ autre
	Pas de piézomètre sur	site		Contrôlo /	0 ppm validité (indiquez les références) :		Condition	_	nent d'échantillons : flacon sol brut + flac	on móthanol
Sondag	e pour <u>échantillons tém</u>	noins : NON		Doublons :				_	flacon / pot sol brut	
Remarq	-				nanol : Sans objet				sac	autre :
	Echantillon de surface	utilisé également pour		Laboratoire		EUROFINS	Conserva	ation	des échantillons :	_
	réaliser l'échantillon co	omposite ISDI S		Envoi (date	/transporteur): 13/04/21	Chronopost		x	glacière	autre:
		,		Enlèvemer	t : bureau / site / autre :	-			carton	
Prof.		IPE GÉOLOGIQUE	1/	Td-	POLLUTION Observations (aspect, couleur, odeur)	Annhana da			ÉCHANTILLO	ON échantillon prélevé
(m)		scription , humidité, dalle, remblais)	Venues d'eau	Taux de compaction	Corps étrangers (plastique, machefer)	Analyses de terrain	N°			echantilion preieve es éléments écartés)
0.05	Graviers/ co	oncassé sur 5cm								
0.03_										
_										
_										
				Davi						
_	l imons o	ocres friables		Peu compact		0	S8	а	0,0)-1,0
_										
_										
_										
1.0										
_										
_	Argile mar	rron limoneuse		Compact +		0				
_										
2.0										
_										
_						-				
_										
-										
-										
3.0						_				
=										
=										
=						1				
=										
=						-				
=										
_						1				
=										
4.0]				



Annexe 4. Méthodes analytiques, LQ et flaconnage

Cette annexe contient 3 pages.

EUROFINS

Méthode	n° CAS	Molécules	Eaux peu	chargées	Matrice	es solides		Air	
Methode	n° CAS	Molecules	LQI	Unité	LQI	Unité	μg/tube	μg/filtre	μg/l
COHVs / B	TEXs (Con	nposés Organo Halogénés Vo	-				pg. talk	pg	F-9
Méthode par	HS/GC/MS								
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	563-58-6	1,1 Dichloropropène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	630-20-6	1,1,1,2 Tétrachloroéthane	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	71-55-6	1,1,1-Trichloroethane	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS HS/GC/MS	79-00-5 79-34-5	1,1,2 Trichloroéthane 1,1,2,2 Tétrachloroéthane	5 5	μg/l μg/l	0,2	mg/kgMS mg/kgMS	25		
HS/GC/MS	75-34-3	1,1-dichloroéthane	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	106-93-4	1,2 Dibromoéthane	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	590-12-5	1,2 Dibromoéthène	10	μg/l			_		
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS HS/GC/MS	526-73-8 120-82-1	1,2,3 Triméthylbenzène 1,2,4 Trichlorobenzène	5 1	μg/l μg/l	0,2	mg/kgMS mg/kgMS	25		
HS/GC/MS	95-63-6	1,2,4 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	107-06-2	1,2-Dichloroéthane	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	541-73-1	1,3 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS		1,3,5 Trichlorobenzène	5	μg/l	0,2	mg/kgMS			
HS/GC/MS	108-67-8	1,3,5 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	106-46-7	1,4-dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS HS/GC/MS	95-49-8	2-Chlorotoluène 2-Ethyltoluène	5	μg/l	0,1	mg/kgMS mg/kgMS	5		
HS/GC/MS	106-43-4	4-Chlorotoluène	1	μg/l μg/l	0,2	mg/kgMS	5		
HS/GC/MS	71-43-2	Benzène	0,5	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	74-97-5	Bromochlorométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS HS/GC/MS	75-27-4 108-90-7	Bromodichlorométhane Chlorobenzène	5 1	μg/l μg/l	0,2 0,1	mg/kgMS mg/kgMS	25 5		
HS/GC/MS	100 30 7	Chloroéthane	50	μg/l	2	mg/kgMS	3		
HS/GC/MS		Chlorométhane	50	μg/l	2	mg/kgMS			
HS/GC/MS	75-01-4 156-59-2	Chlorure de vinyle	0,5 2	μg/l	0,02	mg/kgMS	10		
HS/GC/MS HS/GC/MS	10061-01-5	Cis 1,2-dichloroéthylène Cis 1,3-dichloropropène	5	μg/l μg/l	0,1	mg/kgMS mg/kgMS	25		
HS/GC/MS	124-48-1	Dibromochlorométhane	2	μg/l	0,2	mg/kgMS	10		
HS/GC/MS	74-95-3	Dibromométhane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	75-09-2	Dichlorométhane	5	μg/l	0,05	mg/kgMS	25		
HS/GC/MS HS/GC/MS	100-41-4	Ethylbenzène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS		Ethyl-Tert-ButylEther Hexachloroéthane	5 5	μg/l μg/l	0,2	mg/kgMS mg/kgMS			
HS/GC/MS		Iso-butylbenzène	- J	pg//	0,2	mg/kgMS			
HS/GC/MS	98-82-8	Isopropylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	108-33-3 106-42-3	m+p-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS		Méthyl-Tert-Butyl Ether	5	μg/l	0,05	mg/kgMS			
HS/GC/MS	108-33-3	m-xylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	104-51-8	n-butylbenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	103-65-1	n-Propyl benzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	95-47-6	o-xylène	1	μg/l	0,5	mg/kgMS	5		
HS/GC/MS HS/GC/MS	106-42-3	Pentachloroéthane p-xylène	5 1	μg/l μg/l	0,2 0,05	mg/kgMS mg/kgMS	5		
HS/GC/MS	135-98-8	sec-butylbenzène	1	μg/I μg/I	0,03	mg/kgMS	5		
HS/GC/MS	100-42-5	Styrène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS HS/GC/MS	98-06-6 127-18-4	tert-butylbenzène Tétrachloroéthylène	1	μg/l μg/l	0,1 0,05	mg/kgMS mg/kgMS	5 5		
HS/GC/MS	56-23-5	Tétrachlorométhane	1	μg/I μg/I	0,05	mg/kgMS	5		
HS/GC/MS	108-88-3	Toluène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS HS/GC/MS	156-60-5 10061-02-6	Trans-1,2-Dichloroéthylène Trans-1,3-Dichloropropène	2	μg/l	0,1 0,2	mg/kgMS	10 25		
HS/GC/MS	75-25-2	Trans-1,3-Dichloropropene Tribromométhane	5 5	μg/l μg/l	0,2	mg/kgMS mg/kgMS	25		
HS/GC/MS	75-25-2	Tribromométhane	0,25	μg/l					
HS/GC/MS	79-01-6	Trichloroéthylène	1	μg/l	0,05	mg/kgMS	5		
HS/GC/MS	67-66-3	Trichlorométhane atils par HS/GC/MS	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	carbures voi	>MeC5-nC8	30	μg/l	1	mg/kgMS	100		
113/40/1013									
HS/GC/MS	-	>nC8-nC10	30	μg/l	1	mg/kgMS	100		

Méthode	n° CAS	Molécules		chargées	Matrice	s solides		Air	
00111/	TEV (O		LQI	Unité	LQI	Unité	μg/tube	μg/filtre	μg/l
		mposés Organo Halogénés Vol	atils / B I EX	S)					
Méthode par									
HS/GC/MS	75-35-4	1,1 Dichloroéthène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS	563-58-6	1,1 Dichloropropène	2	μg/l	0,1	mg/kgMS	10		
HS/GC/MS HS/GC/MS	630-20-6 71-55-6	1,1,1,2 Tétrachloroéthane 1,1,1-Trichloroethane	1 2	μg/l μg/l	0,1 0,1	mg/kgMS mg/kgMS	5 10		
HS/GC/MS	79-00-5	1,1,2 Trichloroéthane	5	μg/l	0,2	mg/kgMS	25		
HS/GC/MS	79-34-5	1,1,2,2 Tétrachloroéthane	5	μg/l	0,2	mg/kgMS			
HS/GC/MS HS/GC/MS	75-34-3 106-93-4	1,1-dichloroéthane 1,2 Dibromoéthane	1	μg/l μg/l	0,1 0,05	mg/kgMS mg/kgMS	10 5		
HS/GC/MS	590-12-5	1,2 Dibromoéthène	10	μg/I	0,03	Tilg/ Kgivio	3		
HS/GC/MS	95-50-1	1,2 Dichlorobenzène	1	μg/l	0,1	mg/kgMS	5		
HS/GC/MS	87-61-6	1,2,3 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	526-73-8	1,2,3 Triméthylbenzène	5	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	120-82-1	1,2,4 Trichlorobenzène	1	μg/l	0,1	mg/kgMS	25		
HS/GC/MS	95-63-6	1,2,4 Triméthylbenzène	1	μg/l	0,1	mg/kgMS	5		
	omatiques / .	Aliphatiques C5 – C6	10	μg/l	10	mg/kgMS	10		
-	-	>C6 - C8	10	μg/l	10	mg/kgMS	10		
-	-	>C8 - C10	10	μg/l	10	mg/kgMS	10		
-	-	>C10 - C12 >C12 - C16	10 10	μg/l μg/l	10 10	mg/kgMS mg/kgMS	10 10		
-	-	>C12 - C16 >C16 - C21	10	μg/l μg/l	10	mg/kgMS	10		
-	-	>C21 – C35	10	μg/l	10	mg/kgMS			
-	-	>C35	10	μg/l	10	mg/kgMS	50		
-	-	Somme Fractions aliphatiques >C6 – C7	80 10	μg/l μg/l	80 10	mg/kgMS mg/kgMS	50 10		
-	-	>C6 - C7 >C7 - C8	10	μg/l μg/l	10	mg/kgMS	10		
-	-	>C8 - C10	10	μg/l	10	mg/kgMS	10		
-	-	>C10 - C12	10	μg/l	10	mg/kgMS	10		
-	-	>C12 - C16 >C16 - C21	10 10	μg/l μg/l	10	mg/kgMS mg/kgMS	10		
-	-	>C21 - C35	10	μg/I	10	mg/kgMS			
-	-	>C35	10	μg/l	10	mg/kgMS			
-	-	Somme Fractions aromatiquess	80	μg/l	80	mg/kgMS	50		
LADo /Llv	drooorbure	TPH (somme)	160	μg/l	160	mg/kgMS	100		
парѕ (пу	91-20-3	es Aromatiques Polycycliques) Naphtalène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
	91-57-6	2-Méthyl Naphtalène	0,01	μg/l	0,05	mg/kgMS	0,00	0,00	
		Acénaphtylène	0,01	μg/l	0,05	mg/kgMS	0,05	0,1	
		Acénaphtène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Fluorène Phénanthrène	0,01 0,01	μg/l μg/l	0,05 0,05	mg/kgMS mg/kgMS	0,05 0,05	0,05	
		Anthracène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Pyrène 2-Methylfluoranthène	0,01	μg/l	0,05 0,05	mg/kgMS mg/kgMS	0,05	0,05	
		Benzo(a)anthracène	0,01	μg/l μg/l	0,05	mg/kgMS	0,05	0,05	
		Chrysène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(b)fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(k)fluoranthène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benz(a)pyrène Dibenzo(a,h)anthracène	0,01 0,01	μg/l μg/l	0,05 0,05	mg/kgMS mg/kgMS	0,05 0,05	0,05	
		Indéno-(1,2,3,c,d)-pyrène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
		Benzo(g,h,i)pérylène	0,01	μg/l	0,05	mg/kgMS	0,05	0,05	
HOT. "	4	Benzo(b+k)fluoranthène	0,02	μg/l	0,1	mg/kgMS	0,1	0,1	
CPG	drocarbure	es, Fractions aliphatiques, Fract Hydrocarbures totaux	0,03			Mro) mg/kgMS			
CPG	-	Hydrocarbures totaux Hydrocarbures dissous	0,03	mg/l mg/l	15	mg/kgivio			
	oar méthod								
ICP-AES	-	Antimoine	0,02	mg/l	1	mg/kgMS		0,25	0,005
ICP-AES	-	Arsenic	0,005	mg/l	1	mg/kgMS		2,5	0,05
ICP-AES	-	Baryum Cadmium	0,005 0.005	mg/l mg/l	1	mg/kgMS mg/kgMS		0,25 0,25	0,005 0,005
ICP-AES	-	Chrome	0,005	mg/l	5	mg/kgMS		0,25	0,005
ICP-AES	-	Cuivre	0,01	mg/l	5	mg/kgMS		0,25	0,005
ICP-AES	-	Molybdène	0,005	mg/l	1	mg/kgMS		2,5	0,05
ICP-AES	-	Nickel Plomb	0,005 0,005	mg/l mg/l	5	mg/kgMS mg/kgMS		0,25	0,005
ICP-AES	-	Selenium	0,005	mg/l	10	mg/kgMS		0,5	0,01
ICP-AES	-	Zinc	0,02	mg/l	5	mg/kgMS		2,5	0,05
	oar méthoc	le SFA (Spectrométrie par Fluor	escence A	tomique)					
SFA	-	Mercure			0,1	mg/kgMS			
POLYCHL	OROBIPHI	ENYLS (PCBs)							
		PCB 105 PCB 149	0,01 0,01	μg/l	0,01	mg/kgMS			
		PCB 149 PCB 170	0,01	μg/l μg/l	0,01	Trig/kgiviS			
		PCB 18	0,01	μg/l	0,01	mg/kgMS			
_		PCB 194	0,01	μg/l	0,01	mg/kgMS			
		PCB 20	0,02	μg/l	0,01	mg/kgMS			
		PCB 44	0,01	μg/l	0,01	mg/kgMS			

Annexe 5. Bordereaux d'analyse des sols

Cette annexe contient 14 pages.

Page 1/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

BURGEAP Monsieur Rémi VILLALONGUE 4 Boulevard Jean-Jacques Bosc Les portes de Bègles 33130 BEGLES

RAPPORT D'ANALYSE

Dossier N°: 21E071540 Version du: 23/04/2021

N° de rapport d'analyse : AR-21-LK-085559-01 Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

Coordinateur de Projets Clients : Aurélie Schaeffer / AurelieSchaeffer@eurofins.com / +3303 8802 33 81

N° Ech	Matrice		Référence échantillon
001	Sol	(SOL)	S1A
002	Sol	(SOL)	S1B
003	Sol	(SOL)	S2A
004	Sol	(SOL)	S3A
005	Sol	(SOL)	S4A
006	Sol	(SOL)	S5A
007	Sol	(SOL)	S6A
800	Sol	(SOL)	S7A
009	Sol	(SOL)	S8A
010	Sol	(SOL)	ISDI N
011	Sol	(SOL)	ISDI S

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 C - APE 7120B - RCS SAVERNE 422 998 971

Réf: CESISO210821 / RESISO12707

Page 2/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

RAPPORT D'ANALYSE

Version du: 23/04/2021

Dossier Nº : 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse : Température de l'air de l'enceinte		1000	001 S1A SOL 2/04/2021 6/04/2021 7°C		002 S1B SOL 2/04/2021 6/04/2021 7°C		003 S2A SOL 2/04/2021 5/04/2021 7°C	100	004 S3A SOL 2/04/2021 6/04/2021 7°C		005 S4A SOL 2/04/2021 6/04/2021 7°C	300	006 S5A SOL 2/04/2021 6/04/2021 7°C
	F	ré	paration	Ph	ysico-	Chir	nique						
ZS00U : Prétraitement et séchage à 40°C LS896 : Matière sèche	% P.B.		Fait 83.8		Fait 89.0		Fait 83.9		Fait 83.8		Fait 89.6		Fait 85.7
				Mé	taux								
A STATE OF THE STA					luux	÷							
XXS01: Minéralisation eau régale - Bloc chauffant LS865: Arsenic (As)	mg/kg M.S.		19.5		6.56		25.9		19.6		11.1		33.6
LS870 : Cadmium (Cd)	mg/kg M.S.		<0.40		< 0.40		<0.40	٠	< 0.40	•:	<0.40		< 0.40
LS872 : Chrome (Cr)	mg/kg M.S.	٠	29.3		11.2		24.0	٠	26.1		13.6		32.4
LS874 : Cuivre (Cu)	mg/kg M.S.		8.52		15.0		11.2		10.3	•	12.9	٠	12.1
LS881 : Nickel (Ni)	mg/kg M.S.	٠	21.4	٠	6.53	•	10.1	٠	16.6		6.27	٠	21.5
LS883 : Plomb (Pb)	mg/kg M.S.		18.7		14.4		15.9		16.5		12.3		30.7
LS894 : Zinc (Zn)	mg/kg M.S.	•	59.6		23.4	٠	37.1	٠	50.3	*.	21.4	*	79.0
LSA09 : Mercure (Hg)	mg/kg M.S.		<0.10		<0.10		<0.10	٠	<0.10		<0.10		< 0.10
			Hydrod	carb	ures to	tau	X						
LS919: Hydrocarbures totaux (4 tra	anches)							т		Т		_	
(C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg M.S.		18.1		20.7		18.7		16.2		<15.0		48.7
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.		4.02		6.24		6.61		5.74		<4.00		17.3
HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.		3.61		5.36		4.90		2.42		<4.00		11.7
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.		6.01		5.48		4.66		4.89		<4.00		13.2
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.		4.42		3.62		2.50		3.15		<4.00		6.39

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 C - APE 7120B - RCS SAVERNE 422 998 971

Page 3/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

RAPPORT D'ANALYSE

Version du: 23/04/2021

Dossier Nº : 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

N° Echantillon			001		002		003		004		005		006
Référence client :			S1A		S1B		S2A		S3A		S4A		S5A
Matrice :			SOL		SOL		SOL		SOL		SOL		SOL
Date de prélèvement :			12/04/2021	1	2/04/2021	1	2/04/2021	1.	2/04/2021	12	2/04/2021	12	2/04/2021
Date de début d'analyse :			16/04/2021	1	6/04/2021	1	6/04/2021	1	6/04/2021	10	6/04/2021	1	5/04/2021
Température de l'air de l'enceinte :			7°C		7°C		7°C		7°C		7°C		7°C
Н	lydroca	rbı	ires Arom	atio	ques Po	lyc	ycliques	s (H	HAPs)				
LSRHU : Naphtalène	mg/kg 1	M.S.	* <0.05	٠	<0.05	٠	<0.05	•	<0.05	•	<0.05	٠	<0.05
LSRHI : Fluorène	mg/kg !	M.S.	* <0.05		<0.05	•	<0.05	٠	< 0.05	*	<0.05	٠	< 0.05
LSRHJ: Phénanthrène	mg/kg	M.S.	* <0.05		< 0.05	•	<0.05	٠	< 0.05	•	<0.05	•	< 0.05
LSRHM : Pyrène	mg/kg 1	M.S.	* <0.05		< 0.05		<0.05	٠	< 0.05		< 0.05		< 0.05
LSRHN : Benzo-(a)-anthracène	mg/kg	M.S.	* <0.05		<0.05	•	<0.05	٠	<0.05		<0.05	٠	< 0.05
LSRHP : Chrysène	mg/kg f	M.S.	* <0.05		<0.05	•	<0.05	٠	< 0.05	•	<0.05		< 0.05
LSRHS: Indeno (1,2,3-cd) Pyrène	mg/kg 1	M.S.	* <0.05	٠	<0.05	*	<0.05	٠	< 0.05	•	< 0.05	٠	< 0.05
LSRHT : Dibenzo(a,h)anthracène	mg/kg 1	M.S.	* <0.05	٠	< 0.05		<0.05	٠	< 0.05	*	< 0.05		< 0.05
LSRHV : Acénaphthylène	mg/kg f	M.S.	* <0.05	٠	< 0.05	*	<0.05	٠	< 0.05	*	< 0.05	٠	< 0.05
LSRHW : Acénaphtène	mg/kg 1	M.S.	* <0.05	٠	< 0.05		<0.05	٠	< 0.05	*:	<0.05	٠	< 0.05
LSRHK : Anthracène	mg/kg	M.S.	* <0.05		< 0.05	*	<0.05	٠	< 0.05	•	<0.05	٠	< 0.05
LSRHL: Fluoranthène	mg/kg 1	M.S.	* <0.05		< 0.05	•	<0.05	٠	< 0.05		<0.05		< 0.05
LSRHQ: Benzo(b)fluoranthène	mg/kg 1	M.S.	* <0.05		<0.05	•	<0.05	٠	<0.05	*:	< 0.05	٠	<0.05
SRHR : Benzo(k)fluoranthène	mg/kg 1	M.S.	* <0.05		< 0.05	*	<0.05	٠	< 0.05	•	<0.05		< 0.05
LSRHH : Benzo(a)pyrène	mg/kg f	M.S.	* <0.05		<0.05	•	<0.05	٠	<0.05	•	<0.05	٠	< 0.05
LSRHX : Benzo(ghi)Pérylène	mg/kg f	M.S.	* <0.05		<0.05		<0.05	٠	< 0.05	•	<0.05		< 0.05
LSFF9 : Somme des HAP	mg/kg M	I.S.	<0.05		< 0.05		<0.05		<0.05		<0.05		< 0.05
			Com	pos	sés Vola	tils	3	-		i			
LS9AP : Hydrocarbures volatils tota u	x (C5 - C10)		THE STATE OF								F	
C5 - C8 inclus	mg/kg M	I.S.	<1.00		<1.00		<1.00		<1.00		<1.00		<1.00

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tèl 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

mg/kg M.S.

<1.00

ACCREDITATION
N° 1- 1488
Portée disponible sur
www.cofrac.fr

<1.00

> C8 - C10 inclus

<1.00

<1.00

<1.00

<1.00

Page 4/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

RAPPORT D'ANALYSE

Version du: 23/04/2021

Dossier N°: 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

N° Echantillon	001	002	003	004	005	006
Référence client :	S1A	S1B	S2A	S3A	S4A	S5A
Matrice :	SOL	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	12/04/2021	12/04/2021	12/04/2021	12/04/2021	12/04/2021	12/04/2021
Date de début d'analyse :	16/04/2021	16/04/2021	16/04/2021	16/04/2021	16/04/2021	16/04/2021
Température de l'air de l'enceinte :	7°C	7°C	7°C	7°C	7°C	7°C
	Comp	osés Vola	tils			

			Com	pos	es voia	IIIIS							
LS9AP: Hydrocarbures volatils to Somme C5 - C10	otaux (C5 - C10) mg/kg M.S.		<1.00		<1.00		<1.00	Г	<1.00		<1.00	Г	<1.00
LS0XU : Benzène	mg/kg M.S.	٠	< 0.05		< 0.05	•	<0.05		< 0.05	•	< 0.05		< 0.05
LS0Y4 : Toluène	mg/kg M.S.	•	<0.05		< 0.05	•	<0.05		< 0.05	٠	<0.05		< 0.05
LS0XW: Ethylbenzène	mg/kg M.S.	*	< 0.05	٠	< 0.05	*	<0.05		< 0.05	*	<0.05	٠	< 0.05
LS0Y6 : o-Xylène	mg/kg M.S.	•	< 0.05		<0.05	٠	<0.05	*	< 0.05	٠	< 0.05		<0.05
LS0Y5: m+p-Xylène	mg/kg M.S.	*	< 0.05	٠	< 0.05	•	<0.05	٠	< 0.05	*	< 0.05	٠	< 0.05
LS0IK : Somme des BTEX	mg/kg M.S.		<0.0500		<0.0500		<0.0500		<0.0500		<0.0500		<0.0500

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 C - APE 7120B - RCS SAVERNE 422 998 971

Réf: CESISO210821 / RESISO12707

Page 5/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

RAPPORT D'ANALYSE

Version du: 23/04/2021

Dossier Nº : 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

007 800 009 010 011 N° Echantillon ISDI N ISDI S S6A S7A S8A Référence client : SOL SOL SOL SOL SOL Matrice: Date de prélèvement : 12/04/2021 12/04/2021 12/04/2021 12/04/2021 12/04/2021 16/04/2021 16/04/2021 15/04/2021 15/04/2021 Date de début d'analyse : 16/04/2021 7°C 7°C 7°C 7°C 7°C Température de l'air de l'enceinte :

		Prep	paratio	n Pr	iysico-	Cnir	nique				
ZS00U : Prétraitement et séchage à 40°C		•	Fait	i.	Fait	•	Fait	•	Fait	•	Fait
LS896 : Matière sèche	% P.B.	*	83.7		83.6		88.6		84.0		85.5

LS896 : Matière sèche	% P.B.	•	83.7		83.6	•	88.6		84.0	•	85.5
			Indic	es d	e pollu	tion					
LS08X : Carbone Organique Total (COT)	mg/kg M.S.								1920	•	2500
				Mé	taux						
XXS01: Minéralisation eau régale - Bloc chauffant		•	*				-	Т			
LS865 : Arsenic (As)	mg/kg M.S.	٠	26.9		15.2		9.76				
LS870 : Cadmium (Cd)	mg/kg M.S.	•	<0.40	٠	<0.40		<0.40				
LS872 : Chrome (Cr)	mg/kg M.S.	•	28.6	٠	22.1	*	15.0				
LS874 : Cuivre (Cu)	mg/kg M.S.	٠	8.67		9.22	•	18.4				
LS881: Nickel (Ni)	mg/kg M.S.	٠	20.7	٠	10.1	*	7.40				
LS883 : Plomb (Pb)	mg/kg M.S.	•	24.8		15.4	•	13.0				
LS894 : Zinc (Zn)	mg/kg M.S.	•	71.8	٠	35.8	•	24.6				
LSA09 : Mercure (Hg)	mg/kg M.S. *		<0.10		<0.10		<0.10				
		_				_					

		Hydro	carb	ures t	otau	X			
LS919: Hydrocarbures totaux (4 tra (C10-C40) Indice Hydrocarbures (C10-C40)	mg/kg M.S.	20.4		27.7		19.3	38.8	27.7	
HCT (nC10 - nC16) (Calcul)	mg/kg M.S.	6.84		9.20		5.47	18.1	10.6	

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 6/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

RAPPORT D'ANALYSE

Version du: 23/04/2021

Dossier Nº : 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

N° Echantillon		007	800	009	010	011
Référence client :		S6A	S7A	S8A	ISDI N	ISDI S
Matrice :		SOL	SOL	SOL	SOL	SOL
Date de prélèvement :		12/04/2021	12/04/2021	12/04/2021	12/04/2021	12/04/2021
Date de début d'analyse :		16/04/2021	16/04/2021	16/04/2021	15/04/2021	15/04/2021
Température de l'air de l'enceinte :		7°C	7°C	7°C	7°C	7°C
		Hydroc	arbures to	taux		
LS919 : Hydrocarbures totaux (4 tran	iches)					
(C10-C40) HCT (>nC16 - nC22) (Calcul)	mg/kg M.S.	4.83	6.19	4.64	6.55	3.52
	A VACOR					
HCT (>nC22 - nC30) (Calcul)	mg/kg M.S.	6.21	7.78	5.94	6.39	5.66
HCT (>nC30 - nC40) (Calcul)	mg/kg M.S.	2.50	4.53	3.24	7.75	7.96
Н	lydrocarbu	ires Aroma	atiques Pol	lycycliques	(HAPs)	
LSRHU : Naphtalène	mg/kg M.S.	* <0.05	* <0.05	<0.05	* 0.22	• 0.2
SRHI: Fluorène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	• 0.07	* <0.05
LSRHJ : Phénanthrène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	• 0.13	* 0.065
LSRHM : Pyrène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
LSRHN: Benzo-(a)-anthracène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
LSRHP : Chrysène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
LSRHS : Indeno (1,2,3-cd) Pyrène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
LSRHT : Dibenzo(a,h)anthracène	mg/kg M.S.	* <0.05	* <0.05	<0.05	• <0.05	* <0.05
LSRHV : Acénaphthylène	mg/kg M.S.	* <0.05	* <0.05	<0.05	* <0.05	* <0.05
LSRHW : Acénaphtène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
LSRHK : Anthracène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
LSRHL: Fluoranthène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05
LSRHQ : Benzo(b)fluoranthène	mg/kg M.S.	* <0.05	* <0.05	* <0.05	* <0.05	* <0.05

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tèl 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

mg/kg M.S.

mg/kg M.S. *

< 0.05

< 0.05

ACCREDITATION
N° 1- 1488
Portée disponible sur
www.cofrac.fr

< 0.05

< 0.05

LSRHR: Benzo(k)fluoranthène

LSRHH: Benzo(a)pyrène

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

< 0.05

Page 7/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

RAPPORT D'ANALYSE

Version du: 23/04/2021

Dossier N° : 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

N° Echantillon		0	07	800	009		010		011	
Référence client :		S	6A	S7A	S8A		ISDI N	- 1	ISDI S	
Matrice :		S	OL	SOL	SOL		SOL		SOL	
Date de prélèvement :		12/04	/2021	12/04/2021	12/04/2021	12	2/04/2021	12/	04/2021	
Date de début d'analyse :		16/04	1/2021	16/04/2021	16/04/2021	1	5/04/2021	15	/04/2021	
Température de l'air de l'enceinte	:	7	°C	7°C	7°C		7°C		7°C	
	Hydrocarb	ures A	Aroma	atiques Po	lycyclique	s (H	IAPs)			
LSRHX : Benzo(ghi)Pérylène	mg/kg M.S.	٠.	<0.05	* <0.05	* <0.05	•	<0.05	•	<0.05	
LSFF9 : Somme des HAP	mg/kg M.S.		<0.05	<0.05	<0.05		0.42		0.27	
		Polyc	hloro	biphényle	s (PCBs)					

LS3U7 : PCB 28	mg/kg M.S.	•	<0.01		<0.01
LS3UB : PCB 52	mg/kg M.S.		< 0.01	•	<0.01
LS3U8 : PCB 101	mg/kg M.S.		< 0.01	•	<0.01
LS3U6 : PCB 118	mg/kg M.S.	*	< 0.01		<0.01
.S3U9 : PCB 138	mg/kg M.S.	*	< 0.01	•	<0.01
.S3UA : PCB 153	mg/kg M.S.		< 0.01	•	<0.01
.S3UC : PCB 180	mg/kg M.S.		< 0.01	•	<0.01
LSFEH: Somme PCB (7)	mg/kg M.S.		< 0.010		<0.010

			Com	pos	es voia	แแร					
LS9AP : Hydrocarbures volatils C5 - C8 inclus	s totaux (C5 - C10) mg/kg M.S.		<1.00	Г	<1.00	T	<1.00	Г			
> C8 - C10 inclus	mg/kg M.S.		<1.00		<1.00		<1.00				
Somme C5 - C10	mg/kg M.S.		<1.00		<1.00		<1.00				
S0XU : Benzène	mg/kg M.S.		<0.05		< 0.05		<0.05		< 0.05		<0.05
S0Y4 : Toluène	mg/kg M.S.	•	<0.05		< 0.05	•	<0.05	٠	< 0.05	*	<0.05
S0XW : Ethylbenzène	mg/kg M.S.	•	<0.05		< 0.05	•	<0.05		< 0.05	•	<0.05
S0Y6 : o-Xylène	mg/kg M.S. *		< 0.05		< 0.05		< 0.05	٠	< 0.05		< 0.05

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 C - APE 7120B - RCS SAVERNE 422 998 971

Réf: CESISO210821 / RESISO12707

Page 8/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

< 0.05

< 0.0500

< 0.05

< 0.0500

< 0.05

< 0.0500

93.7

RAPPORT D'ANALYSE

< 0.05

< 0.0500

Version du: 23/04/2021

Dossier Nº: 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

mg/kg M.S.

mg/kg M.S.

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

LS0Y5: m+p-Xylène

Masse

LS0IK : Somme des BTEX

007 800 009 010 011 N° Echantillon ISDI N ISDI S S6A S7A S8A Référence client : SOL SOL SOL SOL SOL Matrice: Date de prélèvement : 12/04/2021 12/04/2021 12/04/2021 12/04/2021 12/04/2021 15/04/2021 15/04/2021 16/04/2021 16/04/2021 16/04/2021 Date de début d'analyse : Température de l'air de l'enceinte : 7°C 7°C 7°C 7°C 7°C Composés Volatils

< 0.05

< 0.0500

		Lixiviation			
LSA36 : Lixiviation 1x24 heures Lixiviation 1x24 heures			Fait	•:	Fait
Refus pondéral à 4 mm	% P.B.		23.0	•	23.5
XXS4D : Pesée échantillon lixivia Volume	ntion ml		950	*.	950

	Analyse	es immédiates	sur éluat					
LSQ13 : Mesure du pH sur éluat pH (Potentiel d'Hydrogène)					8.7		8.7	
Température de mesure du pH	°C				20		20	
LSQ02: Conductivité à 25°C sur éluat Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité	μS/cm °C			٠	122 19.7		110 20.3	
LSM46 : Résidu sec à 105°C (Fraction se sur éluat	oluble)							
Résidus secs à 105 °C	mg/kg M.S.				<2000	*	<4000	
Résidus secs à 105°C (calcul)	% MS			٠	< 0.2	*	< 0.4	
	Indices	s de pollution	sur éluat					

LSM68 : Carbone Organique par mg/kg M.S. 200 * 75 oxydation (COT) sur éluat

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 9/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

45.5

21.2

RAPPORT D'ANALYSE

Version du: 23/04/2021

Dossier Nº : 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

mg/kg M.S.

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

LS04Y: Chlorures sur éluat

N° Echantillon	007	800	009	010	011
Référence client :	S6A	S7A	S8A	ISDI N	ISDI S
Matrice:	SOL	SOL	SOL	SOL	SOL
Date de prélèvement :	12/04/2021	12/04/2021	12/04/2021	12/04/2021	12/04/2021
Date de début d'analyse :	16/04/2021	16/04/2021	16/04/2021	15/04/2021	15/04/2021
Température de l'air de l'enceinte :	7°C	7°C	7°C	7°C	7°C
	Indices de	pollution s	ur éluat		

LSN71 : Fluorures sur éluat	mg/kg M.S.		*:	7.81	*:	9.92	
LS04Z : Sulfate (SO4) sur éluat	mg/kg M.S.			<51.0	•	69.2	
LSM90 : Indice phénol sur éluat	mg/kg M.S.			<0.51		<0.51	
		Métaux sur él	uat				
LSM04 : Arsenic (As) sur éluat	mg/kg M.S.			<0.20		<0.20	
LSM05 : Baryum (Ba) sur éluat	mg/kg M.S.		*	0.12		<0.10	
LSM11 : Chrome (Cr) sur éluat	mg/kg M.S.			<0.10		<0.10	
LSM13 : Cuivre (Cu) sur éluat	mg/kg M.S.			< 0.20	•	<0.20	
LSN26 : Molybdène (Mo) sur éluat	mg/kg M.S.			0.045	•	0.065	
LSM20 : Nickel (Ni) sur éluat	mg/kg M.S.			<0.10	•	<0.10	
LSM22 : Plomb (Pb) sur éluat	mg/kg M.S.			< 0.10		<0.10	
LSM35 : Zinc (Zn) sur éluat	mg/kg M.S.		*	< 0.20	•	<0.20	
LS04W : Mercure (Hg) sur éluat	mg/kg M.S.			< 0.001	*	<0.001	
LSM97 : Antimoine (Sb) sur éluat	mg/kg M.S.		•	0.007	•	0.005	
LSN05 : Cadmium (Cd) sur éluat	mg/kg M.S.		*	< 0.002		<0.002	
LSN41 : Sélénium (Se) sur éluat	mg/kg M.S.		*	0.019	*	0.015	

D : détecté / ND : non détecté z2 ou (2) : zone de contrôle des supports

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tèl 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 10/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 21E071540

N° de rapport d'analyse : AR-21-LK-085559-01

Référence Dossier : N° Projet : CESISO210821 Nom Projet : TEREGA IZAUTE diag (CESISO210821)

Nom Commande : BC21-2205 Référence Commande : BC21-2205

BC21-2205

Version du : 23/04/2021

Date de réception technique : 15/04/2021 Première date de réception physique : 15/04/2021

loveit

Gilles Lacroix
Chef d'Equipe Coordinateur Projets Clients

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 14 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats et conclusions éventuelles s'appliquent à l'échantillon tel qu'il a été reçu. Les données transmises par le client pouvant affecter la validité des résultats (la date de prélévement, la matrice, la référence échantillon et autres informations identifiées comme provenant du client), ne sauraient engager la responsabilité du laboratoire. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

Lors de l'émission d'une nouvelle version de rapport, toute modification est identifiée par une mise en forme gras, italique et souligné.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac.

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les éléments de traçabilité et incertitude (déterminée avec k = 2) sont disponibles sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agréments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des analyses des paramètres du contrôle sanitaire des eaux - portée détaillée de l'agrément disponible sur demande.

Le résultat d'une somme de paramètres est soumis à une méthodologie spécifique développée par notre laboratoire. Celle-ci peut dépendre de la LQ règlementaire du ou des paramètres sommés. Pour les matrices Eaux résiduaires, Eaux douces et Sédiments, elle est définie au sein de l'avis en vigueur de l'Arrêté du 27 octobre 2011, portant les modalités d'agrément des laboratoires effectuant des analyses dans le domaine de l'eau. Pour la matrice d'Eau de Consommation, elle est définie selon l'Arrêté du 11 janvier 2019 modifiant l'arrêté du 5 juillet 2016 relatif aux conditions d'agrément des laboratoires pour la réalisation des prélèvements et des analyses du contrôle sanitaire des eaux et l'arrêté du 19 octobre 2017 relatif aux méthodes d'analyse utilisées dans le cadre du contrôle sanitaire des eaux. Pour plus d'informations, n'hésitez pas à contacter votre chargé d'affaires ou votre coordinateur de projet client.

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tèl 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 C - APE 7120B - RCS SAVERNE 422 998 971

Page 11/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

Dossier N° :21E071540 N° de rapport d'analyse : AR-21-LK-085559-01

Emetteur : Mr Rémi Villalongue Commande EOL : 006-10514-726640

Nom projet : Référence commande : BC21-2205

BC21-2205

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LS04W	Mercure (Hg) sur éluat	ICP/MS - NF EN ISO 17294-2	0.001	mg/kg M.S.	Eurofins Analyses pour l'Environnemen France
LS04Y	Chlorures sur éluat	Spectrophotométrie (UV/VIS) [Spectrométrie visible automatisée] - NF ISO 15923-1	10	mg/kg M.S.	
LS04Z	Sulfate (SO4) sur éluat		50	mg/kg M.S.	1
LS08X	Carbone Organique Total (COT)	Combustion [sèche] - NF ISO 10694 - Détermination directe	1000	mg/kg M.S.	
LS0IK	Somme des BTEX	Calcul - Calcul		mg/kg M.S.	1
LS0XU	Benzène	HS - GC/MS [Extraction méthanolique] - NF EN ISO 22155 (sol) Méthode interne (boue,sèd)	0.05	mg/kg M.S.	
LSOXW	Ethylbenzène	Enterior Control Management Control Co	0.05	mg/kg M.S.	
LS0Y4	Toluène		0.05	mg/kg M.S.	1
LS0Y5	m+p-Xylène		0.05	mg/kg M.S.	1
LS0Y6	o-Xylène		0.05	mg/kg M.S.	1
LS3U6	PCB 118	GC/MS/MS [Extraction Hexane / Acétone] - NF EN 17322	0.01	mg/kg M.S.	
LS3U7	PCB 28		0.01	mg/kg M.S.	1
LS3U8	PCB 101	_	0.01	mg/kg M.S.	1
LS3U9	PCB 138	_	0.01	mg/kg M.S.	1
LS3UA	PCB 153	- 1	0.01	mg/kg M.S.	1
LS3UB	PCB 52	-	0.01	mg/kg M.S.	1
LS3UC	PCB 180	7	0.01	mg/kg M.S.	1
LS865	Arsenic (As)	ICP/AES [Minéralisation à l'eau régale] - ISO 54321 (sol, boue) Méthode interne (autres) - NF EN ISO 11885	1	mg/kg M.S.	
LS870	Cadmium (Cd)		0.4	mg/kg M.S.	1
LS872	Chrome (Cr)		5	mg/kg M.S.	1
LS874	Cuivre (Cu)	_	5	mg/kg M.S.	1
LS881	Nickel (Ni)	7	1	mg/kg M.S.	1
LS883	Plomb (Pb)	7	5	mg/kg M.S.	1
LS894	Zinc (Zn)		5	mg/kg M.S.	1
LS896	Matière sèche	Gravimétrie - NF ISO 11465	0.1	% P.B.	1
LS919	Hydrocarbures totaux (4 tranches) (C10-C40) Indice Hydrocarbures (C10-C40) HCT (nC10 - nC16) (Calcul) HCT (>nC16 - nC22) (Calcul) HCT (>nC22 - nC30) (Calcul) HCT (>nC30 - nC40) (Calcul)	GC/FID [Extraction Hexane / Acétone] - NF EN 14039 (Boue, Sédiments) - NF EN ISO 16703 (Sols)	15	mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S. mg/kg M.S.	
LS9AP	Hydrocarbures volatils totaux (C5 - C10) C5 - C8 inclus	HS - GC/MS - NF EN ISO 16558-1		mg/kg M.S.	

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 12/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

Dossier N° :21E071540 N° de rapport d'analyse : AR-21-LK-085559-01

Emetteur : Mr Rémi Villalongue Commande EOL : 006-10514-726640

Nom projet : Référence commande : BC21-2205

BC21-2205

Sol

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
	> C8 - C10 inclus	metriode	1	mg/kg M.S.	Site de .
	Somme C5 - C10		- 2	mg/kg M.S.	
LSA09	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) [Minéralisation à l'eau régale] - Méthode interne (Hors sol) - NF EN 13346 Méthode B Dèc 2000 Norme abrogée (sol) - NF ISO 16772 (sol)	0.1	mg/kg M.S.	
LSA36	Lixiviation 1x24 heures	Lixiviation [Ratio L/S = 10 l/kg - Broyage par concasseur à mâchoires] - NF EN 12457-2			
	Refus pondéral à 4 mm		0.1	% P.B.	
LSFEH	Somme PCB (7)	Calcul - Calcul	199001	mg/kg M.S.	
LSFF9	Somme des HAP			mg/kg M.S.	
LSM04	Arsenic (As) sur éluat	ICP/AES - NF EN ISO 11885	0.2	mg/kg M.S.	
LSM05	Baryum (Ba) sur éluat	Control of the Section of the Sectio	0.1	mg/kg M.S.	
LSM11	Chrome (Cr) sur éluat	1	0.1	mg/kg M.S.	
LSM13	Cuivre (Cu) sur éluat	1	0.2	mg/kg M.S.	
LSM20	Nickel (Ni) sur éluat	1	0.1	mg/kg M.S.	
LSM22	Plomb (Pb) sur éluat	1	0.1	mg/kg M.S.	
LSM35	Zinc (Zn) sur éluat	1	0.2	mg/kg M.S.	
LSM46	Résidu sec à 105°C (Fraction soluble) sur éluat Résidus secs à 105°C	Gravimétrie - NF T 90-029	2000	mg/kg M.S.	
	Résidus secs à 105°C (calcul)		0.2	% MS	
LSM68	Carbone Organique par oxydation (COT) sur éluat	Spectrophotométrie (IR) [Oxydation à chaud en milieu acide] - Méthode interne (Hors sol) - NF EN 1484 (Sols)	50	mg/kg M.S.	
LSM90	Indice phénol sur éluat	Flux continu - NF EN ISO 14402 (adaptée sur sédiment,boue)	0.5	mg/kg M.S.	
LSM97	Antimoine (Sb) sur éluat	ICP/MS - NF EN ISO 17294-2	0.002	mg/kg M.S.	
LSN05	Cadmium (Cd) sur éluat		0.002	mg/kg M.S.	
LSN26	Molybdène (Mo) sur éluat		0.01	mg/kg M.S.	
LSN41	Sélénium (Se) sur éluat		0.01	mg/kg M.S.	
LSN71	Fluorures sur éluat	Electromètrie [Potentiometrie] - NF T 90-004 (adaptée sur sédiment,boue)	5	mg/kg M.S.	
LSQ02	Conductivité à 25°C sur éluat	Potentiométrie [Méthode à la sonde] - NF EN 27888	0.00		
	Conductivité corrigée automatiquement à 25°C Température de mesure de la conductivité		15	μS/cm °C	
LSQ13	Mesure du pH sur éluat pH (Potentiel d'Hydrogène)	Potentiométrie - NF EN ISO 10523		1.00	
	Température de mesure du pH	<u> </u>		°C	
LSRHH	Benzo(a)pyrène	GC/MS/MS [Extraction Hexane / Acétone] - NF ISO 18287 (Sots) - PR NF EN 17503	0.05	mg/kg M.S.	
LSRHI	Fluorène	to the found that the trees	0.05	mg/kg M.S.	
LSKHI	ridorene	4	0.05	mg/kg M.S.	

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 C - APE 7120B - RCS SAVERNE 422 998 971

Page 13/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

Dossier N° :21E071540 N° de rapport d'analyse : AR-21-LK-085559-01

Emetteur : Mr Rémi Villalongue Commande EOL : 006-10514-726640

Nom projet : Référence commande : BC21-2205

BC21-2205

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Prestation réalisée sur le site de :
LSRHJ	Phénanthrène		0.05	mg/kg M.S.	
LSRHK	Anthracène		0.05	mg/kg M.S.	1
LSRHL	Fluoranthène		0.05	mg/kg M.S.	1
LSRHM	Pyrène		0.05	mg/kg M.S.	
LSRHN	Benzo-(a)-anthracène		0.05	mg/kg M.S.	
LSRHP	Chrysène		0.05	mg/kg M.S.	
LSRHQ	Benzo(b)fluoranthène		0.05	mg/kg M.S.	
LSRHR	Benzo(k)fluoranthène		0.05	mg/kg M.S.	
LSRHS	Indeno (1,2,3-cd) Pyrène		0.05	mg/kg M.S.	
LSRHT	Dibenzo(a,h)anthracène		0.05	mg/kg M.S.	1
LSRHU	Naphtalène		0.05	mg/kg M.S.	
LSRHV	Acénaphthylène		0.05	mg/kg M.S.	
LSRHW	Acénaphtène		0.05	mg/kg M.S.	
LSRHX	Benzo(ghi)Pérylène		0.05	mg/kg M.S.	
XXS01	Minéralisation eau régale - Bloc chauffant	Digestion acide -			
XXS4D	Pesée échantillon lixiviation	Gravimétrie -		120	
	Volume	1	I	ml	l
	Masse			g	
ZS00U	Prétraitement et séchage à 40°C	Séchage [sur la totalité de l'échantillon sauf			1

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

Page 14/14

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 21E071540N° de rapport d'analyse : AR-21-LK-085559-01

Emetteur : Commande EOL : 006-10514-726640

Nom projet : N° Projet : CESISO210821 Référence commande : BC21-2205

TEREGA IZAUTE diag (CESISO210821) BC21-2205

Nom Commande: BC21-2205

C	-	1	
-	O		

N° Ech	Référence Client	Date & Heure Prélèvement	Date de Réception Physique (1)	Date de Réceptior Technique (2)	Code-Barre	Nom Flacon
001	S1A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
002	S1B	12/04/2021 12:55:00	15/04/2021	15/04/2021		
003	S2A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
004	S3A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
005	S4A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
006	S5A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
007	S6A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
800	S7A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
009	S8A	12/04/2021 12:55:00	15/04/2021	15/04/2021		
010	ISDI N	12/04/2021 12:55:00	15/04/2021	15/04/2021		
011	ISDIS	12/04/2021 12:55:00	15/04/2021	15/04/2021		

Date à laquelle l'échantillon a été réceptionné au laboratoire.
 Lorsque l'information n'a pas pu être récupérée, cela est signalé par la mention N/A (non applicable).

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tèl 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.fr/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971

^{(2):} Date à laquelle le laboratoire disposait de toutes les informations nécessaires pour finaliser l'enregistrement de l'échantillon.

Glossaire

AEA (Alimentation en Eau Agricole) : Eau utilisée pour l'irrigation des cultures

AEI (Alimentation en Eau Industrielle) : Eau utilisée dans les processus industriels

AEP (Alimentation en Eau Potable): Eau utilisée pour la production d'eau potable

ARIA (Analyse, Recherche et Information sur les Accidents) : base de données répertorie les incidents ou accidents qui ont, ou auraient, pu porter atteinte à la santé ou la sécurité publiques ou à l'environnement.

ARR (Analyse des risques résiduels) : Il s'agit d'une estimation par le calcul (et donc théorique) du risque résiduel auquel sont exposées des cibles humaines à l'issue de la mise en œuvre de mesures de gestion d'un site. Cette évaluation correspond à une EQRS.

ARS (Agence régionale de santé): Les ARS ont été créées en 2009 afin d'assurer un pilotage unifié de la santé en région, de mieux répondre aux besoins de la population et d'accroître l'efficacité du système.

BASIAS (Base de données des Anciens Sites Industriels et Activités de Service) : Cette base de données gérée par le BRGM recense de manière systématique les sites industriels susceptibles d'engendrer une pollution de l'environnement.

BASOL: Base de données gérée par le Ministère de l'Ecologie, du Développement Durable et de l'Energie recensant les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif.

Biocentre : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Elles prennent en charge les déchets en vue de leur traitement basé sur la biodégradation aérobie de polluants chimiques.

BTEX (Benzène, Toluène, Ethylbenzène, Xylènes): Les BTEX (Benzène, Toluène, Ethylbenzène et Xylènes) sont des composés organiques mono-aromatiques volatils qui ont des propriétés toxiques.

COHV (**Composés organo-halogénés volatils**): Solvants organiques chlorés aliphatiques volatils qui ont des propriétés toxiques et sont ou ont été couramment utilisés dans l'industrie.

DREAL (Directions régionales de l'environnement, de l'aménagement et du logement) : Cette structure régionale du ministère du Développement durable pilote les politiques de développement durable résultant notamment des engagements du Grenelle Environnement ainsi que celles du logement et de la ville.

DRIEE (Direction régionale et interdépartementale de l'environnement et de l'énergie) : Service déconcentré du Ministère en charge de l'environnement pour l'Île de France, la DRIEE met en œuvre sous l'autorité du Préfet de la Région les priorités d'actions de l'État en matière d'Environnement et d'Énergie et plus particulièrement celles issues du Grenelle de l'Environnement. Elle intervient dans l'ensemble des départements de la région grâce à ses unités territoriales (UT).

Eluat: voir lixiviation

EQRS (Evaluation quantitative des risques sanitaires) : Il s'agit d'une estimation par le calcul (et donc théorique) des risques sanitaires auxquels sont exposées des cibles humaines.

ERI (Excès de risque individuel) : correspond à la probabilité que la cible a de développer l'effet associé à une substance cancérogène pendant sa vie du fait de l'exposition considérée. Il s'exprime sous la forme mathématique suivante 10⁻ⁿ. Par exemple, un excès de risque individuel de 10⁻⁵ représente la probabilité supplémentaire, par rapport à une personne non exposée, de développer un cancer pour 100 000 personnes exposées pendant une vie entière.

ERU (Excès de risque unitaire) : correspond à la probabilité supplémentaire, par rapport à un sujet non exposé, qu'un individu contracte un cancer s'il est exposé pendant sa vie entière à une unité de dose de la substance cancérigène.

HAP (Hydrocarbures Aromatiques Polycycliques) : Ces composés constitués d'hydrocarbures cycliques sont générés par la combustion de matières fossiles. Ils sont peu mobiles dans les sols.

HAM (Hydrocarbures aromatiques monocycliques): Ces hydrocarbures constitués d'un seul cycle aromatiques sont très volatils, les BTEX* sont intégrés à cette famille de polluants.

HCT (Hydrocarbures Totaux) : Il s'agit généralement de carburants pétroliers dont la volatilité et la mobilité dans le milieu souterrain dépendent de leur masse moléculaire (plus ils sont lourds, c'est-à-dire plus la chaine carbonée est longue, moins ils sont volatils et mobiles).

IEM (Interprétation de l'état des milieux): au sens des textes ministériels du 8 février 2007, l'IEM est une étude réalisée pour évaluer la compatibilité entre l'état des milieux (susceptibles d'être pollués) et les usages effectivement constatés, programmés ou potentiels à préserver. L'IEM peut faire appel dans certains cas à une grille de calcul d'EQRS spécifique.

ISDI (Installation de Stockage de Déchets Inertes): Ces installations sont classées pour la protection de l'environnement sous le régime de l'enregistrement. Ce type d'installation permet l'élimination de déchets industriels inertes par dépôt ou enfouissement sur ou dans la terre. Sont considérés comme déchets inertes ceux répondant aux critères de l'arrêté ministériel du 12 décembre 2014.

ISDND (Installation de Stockage de Déchets Non Dangereux): Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Cette autorisation précise, entre autres, les capacités de stockage maximales et annuelles de l'installation, la durée de l'exploitation et les superficies de l'installation de la zone à exploiter et les prescriptions techniques requises.

ISDD (Installation de Stockage de Déchets Dangereux) : Ces installations sont classées pour la protection de l'environnement et sont soumises à autorisation préfectorale. Ce type d'installation permet l'élimination de déchets dangereux, qu'ils soient d'origine industrielle ou domestique, et les déchets issus des activités de soins

Lixiviation: Opération consistant à soumettre une matrice (sol par exemple) à l'action d'un solvant (en général de l'eau). On appelle lixiviat la solution obtenue par lixiviation dans le milieu réel (ex : une décharge). La solution obtenue après lixiviation d'un matériau au laboratoire est appelée un éluat.

PCB (Polychlorobiphényles): L'utilisation des PCB est interdite en France depuis 1975 (mais leur usage en système clos est toléré). On les rencontre essentiellement dans les isolants diélectriques, dans les transformateurs et condensateurs individuels. Ces composés sont peu volatils, peu solubles et peu mobiles.

Plan de Gestion : démarche définie par les textes ministériels du 8 février 2007 visant à définir les modalités de réhabilitation et d'aménagement d'un site pollué.

QD (Quotient de danger): Rapport entre l'estimation d'une exposition (exprimée par une dose ou une concentration pour une période de temps spécifiée) et la VTR* de l'agent dangereux pour la voie et la durée d'exposition correspondantes. Le QD (sans unité) n'est pas une probabilité et concerne uniquement les effets à seuil.

VTR (Valeur toxicologique de référence): Appellation générique regroupant tous les types d'indices toxicologiques qui permettent d'établir une relation entre une dose et un effet (toxique à seuil d'effet) ou entre une dose et une probabilité d'effet (toxique sans seuil d'effet). Les VTR sont établies par des instances internationales (l'OMS ou le CIPR, par exemple) ou des structures nationales (US-EPA et ATSDR aux Etats-Unis, RIVM aux Pays-Bas, Health Canada, ANSES en France, etc.).

VLEP (Valeur Limite d'Exposition Professionnelle): Valeur limite d'exposition correspondant à la valeur réglementaire de concentration dans l'air de l'atmosphère de travail à ne pas dépasser durant plus de 8 heures (VLEP 8H) ou 15 minutes (VLEP CT); la VLEP 8H peut être dépassée sur de courtes périodes à condition de ne pas dépasser la VLEP CT.